Methods, supplementary figures and tables

Hydrogen Bonding to Oxygen in Siloxane Bonds Drives Liquid Phase Adsorption of Primary Alcohols in High-Silica Zeolites

Sambhu Radhakrishnan^{a,b}, Charlotte Lejaegere^b, Karel Duerinckx^{a,b}, Wei-Shang Lo^c, Alysson F. Morais^{a,b}, Dirk Dom^{a,b}, C. Vinod Chandran^{a,b}, Ive Hermans^c, Johan A. Martens^{a,b} and Eric Breynaert^{*a,b}

Contents

1. Met	thods	1
1.1.	Sample preparation	1
1.2.	Characterization	2
1.2.1.	Solid state NMR	2
1.2.2.	Infrared spectroscopy	2
1.2.3.	Adsorption isotherm	3
2. Sup	plementary figures and tables	3
2.1.	Synthesis compositions and obtained crystalline phases	3
2.2	NMR investigation of adsorption in situ in a rotor and peak assignments	8
2.3 frame	Determination of maximum theoretical alcohol adsorption capacity in MFI zeolite work	9
2.4	NMR spectral decomposition and mechanistic studies	10
2.5	NMR spectral decomposition and mechanistic studies	13
3. Ref	erences	14

1. Methods

1.1. Sample preparation

Five ZSM-5 (MFI framework type) zeolite samples in ammonium form were obtained from Zeolyst. Herein they are dubbed according to their Si/AI ratio (MFI-11.5 (CBV2314), MFI-15 (CBV3024), MFI-25 (CBV5524), MFI-40 (CBV8014) and MFI-140 (CBV28014)). Before use, the powders were converted to the acid form by calcination at 550 °C. Properties of interest are listed in Table 1. Nitrogen physisorption data was recorded on a Micromeritics instrument (Tristar Surface Area and Porosity Analyzer). The samples were pretreated by heating the powders to 400 °C (ramp of 5 °C/min) under N₂ atmosphere using the SmartPrepTM Programmable Degas System (Micrometrics). The concentration of Brønsted acid sites and defect sites was estimated using NMR spectroscopy (Table 2). The chemical shift ranges of ¹H NMR resonances used for integration of silanol, aluminol and bridging hydroxyl groups were 1 - 2.5, 2.5 - 3.5 and 3.5 - 7 ppm, respectively (Figures S1 and S2, Table S1 and S2).¹ The quantification may be slightly influenced by the presence of trace amounts of very strongly adsorbed water that could not be evacuated by dehydration treatment at 200 °C at 75 mTorr and also by chemical exchange effects² (Table 2 and Figure S1). Spectral

decomposition of ²⁷Al direct excitation spectra using Czjzek³ line-shapes for quadrupoles in DMFIT software was used for identification and quantification of ²⁷Al species in different coordination environments, namely tetra-, distorted tetra-, penta- and hexa-coordination (Table 1, Table S3 and Figure S3). The presence of significant amounts of extraframework aluminum was observed, especially in the case of Al-rich zeolites (MFI-11.5, MFI-15), accounting for the higher concentrations of aluminols.

1.2. Characterization

1.2.1. Solid state NMR

¹H direct excitation, ¹H-¹³C CPMAS and ¹H-²⁹Si HETCOR spectra were acquired on a Bruker Avance III 500 MHz (11.7 T) spectrometer equipped with a 4 mm H/X/Y triple resonance solid-state magic angle spinning (MAS) probe. Adsorbent samples were packed into a 4 mm ZrO₂ rotor and dried inside the rotor for 16 h at 200 °C under vacuum (75 mTorr). The dried adsorbents were subsequently loaded with alcohol, followed by capping the rotors with vespel snap-on caps and equilibrated for 4 h at 60 °C prior to the measurement. ¹H direct excitation spectra were recorded in a quantitative way⁴ with a $\pi/2$ radio-frequency pulse (RF) at 83 kHz, averaging 8 transients with a recycle delay of 2 s. ¹H-¹H double-quantum-single-quantum (DQ-SQ) MAS correlation spectra were measured using the BABA⁵⁻⁷ sequence with excitation and conversion periods of 0.13 ms. The two-dimensional spectra were collected with 80 te increments of 66.67 µs in the indirect dimension and 16 transients in the direct dimension. ¹H-¹³C (125.95 MHz) cross-polarization (CP) MAS NMR experiments were recorded at a MAS rate of 15 kHz using a 83 kHz ¹H excitation pulse, a 2500 µs ramped pulse (100 % -70 %), ¹H contact pulse at 50 kHz and a square ¹³C contact pulse at 65 kHz, accumulating 2048 scans with a recycle delay of 2 s. ¹H-¹³C CP-HETCOR experiment was performed at 15 kHz MAS using 64 scans and a contact time of 500 µs, collecting 144 slices with 16.67 µs increment. SPINAL-648 H-decoupling was performed during acquisition using 56 kHz RF pulses. ¹H and ¹³C spectra were referenced using adamantane ¹H and ¹³C (methylene) resonances at 1.81 ppm and 38.5 ppm respectively as a secondary reference to neat tetramethyl TMS (0 ppm). Direct excitation ²⁹Si (99.50 MHz) MAS NMR was performed at a MAS rate of 15kHz, using 61 kHz RF excitation pulses, 256 transients with a recycle delay of 120 s and SPINAL-64 ¹H-decoupling at 56 kHz. 1H-29Si CP-HETCOR experiment was performed at 15 kHz MAS using 160 scans and a contact time of 1000 µs, collecting 72 slices with 33.33 µs increment. ¹H contact pulse of 56 kHz (100 - 70 % ramped pulse) and a square 70 kHz RF on Si was used. SPINAL-64 ¹H decoupling with 56 kHz RF pulses were performed during acquisition. ²⁹Si spectra were referenced against neat TMS using secondary reference Q₈M₈ [Si(CH₃)₃]₈Si₈O₂₀] resonance at 109.68 ppm, for the farthest downfield frequency peak.⁹ ²⁷Al direct excitation NMR spectra were acquired at 15 kHz MAS using 208 kHz RF pulse, recycle delay of 1 s and SPINAL64 decoupling at 56 kHz RF. 4096 transients were acquired for MFI-11.5, MFI-15, MFI-25, MFI-40, while 49,152 transients were acquired for MFI-140. ²⁷Al spectra were referenced against a 1.1 M Al(NO₃)₃ solution in D₂O at 0 ppm. Spectral decomposition was performed with DMFIT¹⁰ software.

1.2.2. Infrared spectroscopy

IR spectra of 1-pentanol adsorption on zeolites were recorded by using a Bruker Vertex 70 spectrometer equipped with a liquid nitrogen-cooled Mercury-Cadmium-Telluride (MCT) detector. The measurements were performed by averaging 128 scans at 4 cm⁻¹ resolution between 800 and 4000 cm⁻¹. Zeolite powders (~10 mg) were pressed into a self-supporting wafer and placed into a sample holder in a home-built transmission cell. The temperature of the sample was controlled by a PID controller (LOVE Controls 16B) with a type-K thermocouple directly contacted with the sample holder. Before the IR measurements, each sample was heated up to 30 °C under a dry air flow (40 cm³ min⁻¹, Drierite Gas Purifier) for 12 h. The IR cell was heated up to 500 °C (5 °C min⁻¹) and held for 1 h under a dry air flow (40 cm³ min⁻¹). After that, the cell was cooled down to 200 °C under dry air and evacuated (< 1x10⁻⁴ Torr) by a turbo pump (Pfeiffer). A background FT-IR spectrum was collected at 30 °C under vacuum (< 1x10⁻⁴ Torr). The zeolites were then exposed to increasing vapor pressures of 1-pentanol at 25 °C to promote adsorption. Different pentanol dosages were achieved by bubbling N₂ through a bubbler (Aldrich, 4 mL) containing 1-pentanol and assuming saturation. For each 1-pentanol dosage, the IR spectrum was measured after the pressure in the cell remained constant for 3 min.

1.2.3. Adsorption isotherm

Liquid phase adsorption at high solid/liquid ratio. Determination of the saturation capacity of MFI-11.5 and MFI-140 for the different alcohols (methanol, ethanol, 1- propanol obtained from Acros Organic and 1-pentanol from Fluka Chemicals) and 1- pentanol adsorption on MFI-15, MFI-25 and MFI-40 was performed by addition of small aliquots of the alcohol to a rotor-packed zeolite dehydrated at 200°C under vacuum after packing in the NMR rotor. Adsorption of pure alcohol from the liquid phase onto MFI zeolite was investigated using *in situ* quantitative ¹H direct excitation MAS NMR.⁴ ¹H direct excitation MAS NMR enables absolute quantification, ^{4,11,12} while at the same time allowing to discriminate between adsorbed and mobile fractions based on their relaxation behaviour. The combined information allows to quantify adsorption.

2. Supplementary figures and tables

2.1. Synthesis compositions and obtained crystalline phases

Figure S1. Spectral decomposition of ¹H NMR spectra of all the dehydrated adsorbents. All the spectra are scaled to height.

Figure S2. Integrated areas plotted against amount of ¹H added [mmol/g]. The slope of the fit (286902) is the area/mmol ¹H.

Table S1. Determination of concentration of different ¹H species (BAS/BAS+H₂O, AIOH & SiOH) in the different adsorbents. The adsorbents were dehydrated under vacuum (0.75 Torr) at 200°C. The slope of the standard addition curve (286902) was used for the calculation

		Relative Integral (%)			Concentration [mmol/g]		
Adsorbent	Total integral per gram	BAS/BAS+H ₂ O	AIOH	SiOH	BAS/BAS+H ₂ O	AIOH	SiOH
MFI-11.5	476257.3	60.2	36.7	3.0	1	0.61	0.05
MFI-15	289771	38.6	13.3	9.0	0.64	0.22	0.15
MFI-25	240997.7	36.1	2.4	12.0	0.6	0.04	0.2
MFI-40	172141.2	22.3	4.8	9.0	0.37	0.08	0.15
MFI-140	34428.24	4.2	0.6	2.4	0.07	0.01	0.04

Table S2. Experimental data of water standard addition to determine the integrated area/mmol ¹H. Integrated areas and amount of water added in g and as mmol are represented. Q-values of the NMR probe head was measured using a HP RF Network Analyzer

Water added [mg]	¹ H added [mmol]	Area	Q-values
0.0	0.000	30824.68	620.9
1.1	0.117	56893.53	622.2
1.9	0.211	88801.32	596.9
2.8	0.311	118857.4	595.3

Table S3. Si/AI ratio for the MFI zeolites used in this study. Column 1: data provided by the supplier; Column 2: values calculated from elemental analysis (ICP-OES) and Column 3: values reported in the PhD thesis of A. Janda (University of Berkeley) for the same materials.¹³

Zeolite	Si/Al (Zeolyst)	Si/AI (ICP)	Si/AI (ICP) PhD Thesis A. Janda ¹³
MFI-	11.5	12.5	12.1 ± 1.7
11.5			
MFI-15	15	17.8	16.5 ± 2.5
MFI-25	25	32	28.8 ± 4.4
MFI-40	40	50	43.7 ± 6.5
MFI-140	140	152	142 ± 48

Zeolite	$\delta_{Iso(}^{27}AI_{)}(ppm)$	C _Q (MHz)	dCS (ppm)	Relative integral (%)	Assignment
MFI-11.5	56.2	2.6	3.4	40	Tetra
	52.9	1.1	3.7	4	Tetra
	47.9	1.8	17.6	25	Distorted-Tetra
	30.1	2.0	20.4	12	Penta
	0.3	1.6	4.8	4	Hexa
	-3.5	1.8	22.7	15	Hexa
	-5.6	1.4	2.9	1	Hexa
MFI-15	56.3	2.5	2.7	45	Tetra
	53.3	1.4	3.3	9	Tetra
	47.6	1.9	15.6	20	Distorted-Tetra
	31.0	2.0	20.4	10	Penta
	1.0	2.5	3.8	5	Hexa
	-4.8	2.3	23.8	11	Hexa
MFI-25	57.1	2.2	2.8	53	Tetra
	54.3	1.1	3.7	20	Tetra
	49.6	2.7	22.4	20	Distorted-Tetra
	0.3	1.2	3.0	2	Hexa
	-3.4	1.7	15.7	5	Hexa
MFI-40	60.4	1.5	18.6	3	Tetra
	57.0	1.6	2.7	47	Tetra
	54.2	1.0	3.4	35	Tetra
	49.8	1.4	23.2	11	Distorted-Tetra
	-0.3	0.5	1.4	1	Hexa
	-2.1	1.6	12.7	3	Hexa
MFI-140	60.0	1.5	16.9	5	Tetra
	57.0	1.5	2.9	45	Tetra
	54.5	1.8	2.4	27	Tetra
	49.8	1.5	27.9	18	Distorted-Tetra
	-0.3	1.4	16.4	5	Hexa

Table S4. Determination of concentration of different ²⁷Al species via spectral decomposition in the different adsorbents.

Figure S3. Spectral decomposition of ¹H decoupled ²⁷AI direct excitation NMR spectrum. Results depicted in Table 2.

Figure S4. PXRD patterns of the different MFI zeolites,

Figure S5. N₂ physisorption isotherm and t-plot respectively for H-MFI-11.5 (a, a'), H-MFI-15 (b, b'), H-MFI-25 (c, c'), H-MFI-40 (d, d') and H-MFI-140 (e, e').

2.2 NMR investigation of adsorption *in situ* in a rotor and peak assignments

Figure S6. ¹H-¹³C HMQC measurement of 1-pentanol liquid depicting the identification of different resonances

Figure S7. ¹H-¹³C HETCOR spectrum of 1-petanol adsorbed on MFI-11.5, confirming the assignments.

Figure S8. ¹H NMR spectra of MFI-11.5 (a) and MFI-140 (b) upon addition of 1-pentanol higher than the micropore volume (blue trace) and after evacuation at 0.75 Torr for 20 h (green trace).

2.3 Determination of maximum theoretical alcohol adsorption capacity in MFI zeolite framework

Theoretical maximum alcohol adsorption capacity per unit cell calculated by considering the geometry of the two-channel type MFI framework (Table 3, Table S4 and Figure S7). One unit cell contains four linear segments of 4.5 Å length, four sinusoidal segments of 6.5 Å length and four intersections, all of cross section 5.5 Å.¹⁴ The total channel length considered for adsorption was 18, 26.6 and 22.4 Å for the straight channels, the sinusoidal segments, and the intersections respectively. Adsorbed alcohol molecules were assumed to exhibit a critical diameter of ~4.6 Å and to orient along the pore axis.¹⁵ As expected from a geometrical perspective, increasing chain length leads to a decrease in the maximum number of adsorbed molecules.

Figure S9. Visualization of the theoretical calculations of maximum pore filling of 1-pentanol in the MFI framework unit cell.^{4,8}

Table S5. The molecule length and theoretical maximum adsorbed alcohol molecules per MFI unit cell^{16,17}

1-Alcohol	Molecule length [Å]	Theoretical maximum MFI [N/UC]
Methanol	2.8	23.9
Ethanol	4.03	16.5
1-Propanol	5.31	12.5
1-Pentanol	7.07	9.5

Table S6. Variation of 1-pentanol adsorption capacity per BAS and per unit cell in the zeolite framework for MFI zeolites with different Si/AI ratios

Zeolite	Adsorbed per UC		Adsorbed	Adsorbed	Adsorbed per BAS +
	Theoretical	Experimental	amount (mmol/g)	per BAS	Defect sites
MFI-11.5	9.5	7.6	1.31	1.2	0.8
MFI-15	9.5	8.7	1.48	2.3	1.4
MFI-25	9.5	8.8	1.51	2.5	1.8
MFI-40	9.5	9.5	1.62	4.4	2.7
MFI-140	9.5	9.5	1.62	23.2	13.5

Figure S10. Spectral decomposition of ¹H direct excitation spectrum of 1-pentanol adsorbed H-MFI-140 and H-MFI-11.5 at 295K. Integrals relative to CH_2 -1 ¹H resonance is provided in the table.

Figure S11. Spectral decomposition of ¹H direct excitation spectrum of 1-pentanol adsorbed H-MFI-140 at 295 K and 253 K. After adsorption exceeding the pore volume, the rotor with sample was subjected to vacuum treatment at room temperature to remove excess mobile molecules.

Figure S12: ¹H-¹H RFDR spectrum of 1-pentanol adsorbed H-MFI-140.

Figure S13. Pulse sequence (BABA) used for DQ-SQ experiments.

Figure S14. ¹H-¹H DQ-SQ spectrum of dehydrated H-MFI-140 (a) and H-MFI-140 with 10% pore-filling water. In the ¹H-¹H DQ-SQ spectra of the dry MFI-140 (Figure S14a), the self and cross correlations in and between the silanol nests immediately catch the eye of the reader (respectively at coordinates 1.8, 3.6 ppm and 2, 4 ppm). In the ¹H-¹H DQ-SQ spectra of the weakly hydrated (10% pore-filling) MFI-140 (Figure S14b), the self-correlations of silanol nests (1.8, 3.6 ppm), and multiple water populations [(4, 8 ppm) & (6.5, 13 ppm) , most probably water hydrogen bonded to and in chemical exchange with silanol groups, as well as water hydrogen bonded to BAS / siloxane bridges respectively] are indeed readily observed.

2.5 In situ FT-IR investigation of 1-pentanol adsorption on MFI-11.5 and MFI-140.

Figure S15. IR spectra of dehydrated MFI-140 and MFI-11.5 measured at 200 °C under dried air.

Figure S16. IR difference spectra of (a) MFI-140 and (b) MFI-11.5 with increasing dosage of 1-pentanol measured at 30 °C. The background spectrum was collected on the parent sample at 30 °C under vacuum.

Figure S17. IR spectra of liquid-phase pentanol, gas-phase pentanol, and 1-pentanol dissolved in the nonpolar solvent of dichloromethane.

3. References

- 1 M. Hunger, Catal. Rev. Sci. Eng., 1997, **39**, 345–393.
- 2 M. Wang, N. R. Jaegers, M. S. Lee, C. Wan, J. Z. Hu, H. Shi, D. Mei, S. D. Burton, D. M. Camaioni, O. Y. Gutiérrez, V. A. Glezakou, R. Rousseau, Y. Wang and J. A. Lercher, *J. Am. Chem. Soc.*, 2019, **141**, 3444–3455.
- 3 J. B. d'Espinose de Lacaillerie, C. Fretigny and D. Massiot, J. Magn. Reson., 2008, 192, 244–251.
- 4 M. Houlleberghs, A. Hoffmann, D. Dom, C. E. A. Kirschhock, F. Taulelle, J. A. Martens and E. Breynaert, *Anal. Chem.*, 2017, **89**, 6940–6943.
- 5 M. Feike, D. E. Demco, R. Graf, J. Gottwald, S. Hafner and H. W. Spiess, *J. Magn. Reson. Ser. A*, 1996, **122**, 214–221.
- 6 S. H. Park, S. Radhakrishnan, W. Choi, C. V. Chandran, K. C. Kemp, E. Breynaert, R. G. Bell, C. E. A. Kirschhock and S. B. Hong, *J. Am. Chem. Soc.*, 2022, **144**, 18054–18061.
- 7 B. Vallaey, S. Radhakrishnan, S. Heylen, C. V. Chandran, F. Taulelle, E. Breynaert and J. A. Martens, *Phys. Chem. Chem. Phys.*, DOI:10.1039/c8cp01586d.
- 8 T. Bräuniger, P. Wormald and P. Hodgkinson, *Monatshefte fur Chemie*, 2002, **133**, 1549–1554.
- 9 C. R. Pesce, G. L., Bowen and R. J. Rocha, J., Sardo, M., Allen, G. C., Walker, P. J., Denault, G., Serrapede, M., and Ball, *Clay Miner.*, 2014, **49**, 341–358.
- 10 D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan and G. Hoatson, *Magn. Reson. Chem.*, 2002, **40**, 70–76.
- 11 S. Radhakrishnan, H. Colaux, C. V. Chandran, D. Dom, L. Verheyden, F. Taulelle, J. Martens and E. Breynaert, *Anal. Chem.*, 2020, **92**, 13004–13009.
- 12 H. Vanderschaeghe, M. Houlleberghs, L. Verheyden, D. Dom, C. V. Chandran, S. Radhakrishnan, J. A. Martens and E. Breynaert, *Anal. Chem.*, 2022, **95**, 1880–1887.
- 13 A. L. Janda, University of California, Berkeley, 2015. https://escholarship.org/uc/item/27g1z5ck.
- 14 J. F. M. Denayer, K. De Meyer, J. A. Martens and G. V. Baron, *Angew. Chemie Int. Ed.*, 2003, **42**, 2774–2777.

- 15 Z. Song, Y. Huang, W. L. Xu, L. Wang, Y. Bao, S. Li and M. Yu, *Sci. Rep.*, 2015, **5**, 13981.
- 16 E. García-Pérez, P. S. Barcia, J. A. C. Silva, A. E. Rodrigues and S. Calero, *Theor. Chem. Acc.*, 2011, **128**, 695–703.
- 17 H. Liu, Z. Zhang, B. H. Chen and Y. Zhao, *J. Porous Mater.*, 2008, **15**, 119–125.