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Fig. S1. The thermal diffusivity (α) and specific heat (cp) of PU. 



3

Fig. S2. The electrical resistivity of the Mn film sputtered on a silicon wafer. The electrical 

resistivity is experimentally measured as a function of temperature by the four-point probe in-

line method using a laboratory-built device.1-3
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Fig. S3. The reflected temperature and emissivity calibration setup.4-6



5

Fig. S4. The experimentally measured environmental temperature (T∞) and low-end 

specimen temperature (TL) are shown as a function of heat flux. The dashed line represents 

a linear fit to the experimental data.
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Fig. S5. The thermal rectification efficiency of the asymmetric PU-Mn specimen is 

simulated by FEM as a function of heat flux (TL = 35.5 ℃, T∞ = 38.5 ℃).
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Fig. S6. The temperature profiles (a, b) and TR (c) of the asymmetric PU-Mn specimen 

are simulated considering Qcond only.
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Fig. S7. The temperature distribution along the specimen (applied heater voltage = 1.7 ~ 

3.2 V). The FEM simulation result is also shown. The arrow indicates the heat transfer 

direction. (a, b) The second specimen data. (c, d) The third specimen data. 
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Fig. S8. The representative geometries of 14 different types of thermal rectifiers for the 

beta-VAE training. 
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Fig. S9. The details of the beta-variational autoencoder. (a) Structure of the encoder and decoder. 

(b) Learning history.
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Fig. S10. The proposed framework for the generative designs of asymmetric thermal 

rectifiers.
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Fig. S11. The CNN-based TR prediction model. (a) Structure. (b) Learning history. (c) 

Training results.  
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Fig. S12. Comparison of the machine learning prediction (TRML) and FEM analysis of the 

post-processed simplified design (TRFEM). The error is calculated by (TRFEM-TRML)/TRML × 

100 (%).
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