# Electronic Supporting Information

# Deep-Blue Narrow-Band Emissive Cesium Europium Bromide Perovskite

## Nanocrystals with Record High Emission Efficiency for Wide-Color-Gamut Backlight

## Displays

Xu Li,<sup>a,†</sup> Bibo Lou,<sup>b,†</sup> Xu Chen,<sup>a\*</sup> Meng Wang,<sup>a</sup> Huifang Jiang,<sup>a</sup> Shuailing Lin,<sup>a</sup> Zhuangzhuang Ma,<sup>a</sup> Mochen Jia,<sup>a</sup> Yanbing Han,<sup>a</sup> Yongtao Tian,<sup>a</sup> Di Wu,<sup>a</sup> Wen Xu,<sup>c</sup> Xinjian Li,<sup>a</sup> Chonggeng Ma<sup>b</sup> and Zhifeng Shi<sup>a\*</sup>

<sup>a.</sup>Key Laboratory of Material Physics, Ministry of Education, School of Physics and

Microelectronics, Zhengzhou University, Zhengzhou 450052, China.

<sup>b.</sup> School of Optoelectronic Engineering & CQUPT-BUL Innovation Institute, Chongqing

University of Posts and Telecommunications, Chongqing 400065, P.R. China.

<sup>c.</sup>Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic

Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu

University, Dalian 116600, China.

<sup>+</sup>These authors contributed equally: X.L. and B.L.

\*Corresponding author. E-mail: shizf@zzu.edu.cn; xchen@zzu.edu.cn



**Fig. S1** XRD results of CsEuBr<sub>3</sub> NCs synthesized under different conditions: (a) Addition ratio of Eu/Cs (45 min at 280 °C). (b) The reaction temperature for 45 min reaction time (Eu/Cs=4:1). (c) Reaction time at 280 °C (Eu/Cs=4:1).

In order to explore the synthesis conditions for obtaining pure phase CsEuBr<sub>3</sub> NCs, we characterized CsEuBr<sub>3</sub> NCs synthesized under different conditions using XRD. The results showed that the ratio of Eu/Cs was 4:1, and the XRD was pure phase after reacting at 280 °C for 45 min.



Fig. S2 (a) PL for different reaction time. (b) PL at the different reaction temperatures.



Fig. S3 (a) XRD, (b) PL and PLE of CsBr:Eu<sup>2+</sup> NCs.

The XRD pattern of CsBr:Eu<sup>2+</sup> NCs in Fig. S3a is consistent with the standard cards ofCsBr (PDF# 061-071-495), and the PL spectrum of CsBr:Eu<sup>2+</sup> NCs with an emission peakat441nminFig.S3b.



Fig. S4 PL and PLE of EuBr<sub>2</sub>.

The huge difference between  $EuBr_2$  and  $CsEuBr_3\ NCs$  can rule out the influence of

 $EuBr_2$ 

on

luminescence.



Fig. S5 PLQY variation of  $CsEuBr_3$  NCs synthesized with varying conditions of the reaction



**Fig. S6** (a) UV–vis absorption spectra of the NCs prepared at 280 °C with various reaction times. (b) decay of CsEuBr<sub>3</sub> NCs for different reaction times. (c) Urbach energies in different reaction time.

The change in the Urbach energies ( $E_U$ ) is related to the change in defect density. The larger the  $E_U$ , the larger the density of defect states. According to the formula,

$$\alpha$$
(E) =  $\alpha_0 \exp\left[\sigma(T) \frac{E - E_0}{k_B T}\right]$  \\* MERGEFORMAT (1)

where  $\alpha(E)$  is the absorption coefficient as a function of photon energy *E*, *E*<sub>0</sub>, and  $\alpha_0$  are the characteristic parameters of the material,  $\sigma(T)$  is the steepness factor,  $k_B$  is the Boltzmann constant, and T is the absolute temperature. The *E*<sub>U</sub> is defined as *E*<sub>U</sub> =  $k_B T/\sigma(T)$ . When the reaction time increases from 15 min to 45 min, *E*<sub>U</sub> decreases from 356.21 to 355.11 meV. When the reaction time further increases to 60 min, *E*<sub>U</sub> decreases to 355.49 meV. When the reaction time is 45 min, the corresponding *E*<sub>U</sub> of CsEuBr<sub>3</sub> NCs is the smallest, indicating that the defects are the least at this time. The results are consistent with the PL, PLQY, and TRPL characterization. The results show that as the reaction time increases, the electron disorder and defect density in the NCs will increase, and the optimal reaction time is beneficial for reducing the defect density of CsEuBr<sub>3</sub> NCs.



Fig. S7 TRPL of CsEuBr<sub>3</sub> NCs for different reaction times.

The TRPL curve was fitted using a double exponential decay curve:

$$y = A_1 \exp(-t / \tau_1) + A_2 \exp(-t / \tau_2) + I_0$$
 \\* MERGEFORMAT (2)

$$\tau_{\text{ave}} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2} \qquad \qquad \mathbf{\ \ } \text{\ \ } \text{MERGEFORMAT (3)}$$

where  $\tau_1$  and  $\tau_2$  represent the fast and slow decay processes, associated with the lifetimes of de-trapping to defect states and radiative recombination, respectively.  $A_1$ ,  $A_2$ , and  $I_0$  are constants.  $\tau_{ave}$  represents the average PL lifetime.

As the reaction time increases, the TRPL exhibits a trend of first increasing and then decreasing.  $\tau_{ave}$  was fitted using eq 2, and the results show that  $\tau_{ave}$  increases from 179.1 ns to 455.7 ns, indicating that CsEuBr<sub>3</sub> NCs at this reaction temperature have the lowest defect density. When the reaction time increases to 60 min, more organic ligands are replaced on the surface of NCs, resulting in the loss of a certain length of organic ligands as spacing. This promotes their fusion and defect density increase, leading to a loss of good photoelectronic performance.



Fig. S8 TEM images of CsEuBr<sub>3</sub> NCs synthesized by reaction at different temperatures:

| (a) | 240 | °C; | (b) | 260 | °C; | (c) | 300 | °C. |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     |     |     |     |     |     |     |



**Fig. S9** The FFT images shown correspond to the RHTEM images of CsEuBr<sub>3</sub> NCs synthesized at 280 °C for different reaction time: (a) 15 min; (b) 30 min; (c) 45 min; (d) 60 min.



**Fig. S10** Energy dispersive spectroscopy (EDS) spectrum and the composition analysis of CsEuBr<sub>3</sub> NCs.



Fig. S11 XPS spectrum of CsEuBr<sub>3</sub> NCs.



**Fig. S12** XPS spectra and the relevant results of different elements: (a) Cs 3d, (b) Eu 3d, (c) Br 3d of CsEuBr<sub>3</sub> NCs, and CsBr:Eu<sup>2+</sup>.



Fig. S13 (a)  $[EuBr_6]^{4-}$  cluster octahedral structure. (b)  $[(Eu\&Cs)Br_8]^{6-}$  cluster cubic structure.

To distinguish the red-shift of the emission peaks of  $CsEuBr_3$  NCs compared to  $CsBr:Eu^{2+}$  NCs, we introduce a distorted lattice to explain the red shift of the emission spectrum of  $CsEuBr_3$ . The distortion index *D* can be expressed as,<sup>1</sup>

$$D = \frac{1}{n} \sum_{i=1}^{n} \frac{|d_i - d_{av}|}{d_{av}}$$
 \\* MERGEFORMAT (4)

where *n* denotes the number of ligands,  $d_{av}$  denotes the average distance, and  $d_i$  denotes the distance between Eu<sup>2+</sup> and the i-th ligand Br<sup>-</sup>. The distortion index of CsEuBr<sub>3</sub> is calculated as  $3.88 \times 10^{-4}$ , which is greater than the distortion index of CsBr:Eu<sup>2+</sup>, resulting in a red shift of the emission peak of CsEuBr<sub>3</sub> NCs.



Fig. S14 CsEuBr<sub>3</sub> NCs deep blue emission in CIE coordinates.



Fig. S15 (a) Detection of emission spectra corresponding to different excitations. (b)

Detection of the excitation spectra corresponding to the different emissions.



Fig. S16 FWHM of  $CsEuBr_3 NCs$  at 80 K.



Fig. S17 TRPL decay curves of  $CsEuBr_3$  NCs upon 340 nm excitation monitored at 443 nm from 80 to 300 K.

Fig. S17 shows a typical PL decay curve of  $CsEuBr_3$  NCs monitored at 443 nm emission at 88-300 K. The results indicate that the PL lifetime of  $CsEuBr_3$  at 80 K is longer than that at 300 K, which may be related to the thermally assisted escape route and temperature-dependent rapid non-radiative recombination.



**Fig. S18** (a) Temperature-dependent PLE spectra of CsEuBr<sub>3</sub> NCs. (b) Pseudocolor map of temperature-dependent PLE spectra of the CsEuBr<sub>3</sub> NCs. (c) Normalized temperature-dependent PLE spectra of CsEuBr<sub>3</sub> NCs.



**Fig. S19** (a) The band structure and (b) PDOS of  $CsEuBr_3$  hosts calculated with the PEBO functional with spin-up electrons, respectively. (c) The band structure and (d) PDOS of  $CsEuBr_3$  hosts calculated with the PEBO functional with spin-down electrons, respectively.



**Fig. S20** (a) The band structure and (b) PDOS of CsEuBr<sub>3</sub> hosts calculated with the PEB0+SOC functional, respectively.



Fig. S21 CsEuBr<sub>3</sub> NCs films placed in an air environment (25–30 °C, 20–30% humidity)

|  | for | 50 | h | of | a) | PL | and | b) | XR |
|--|-----|----|---|----|----|----|-----|----|----|
|--|-----|----|---|----|----|----|-----|----|----|



**Fig. S22** (a) "Rose", (b) "coconut tree", (c) "flounder", (d) "turtle leaf", (e) "seahorse", and (f) "clover" patterns made with composite film ink print.



**Fig. S23** (a) PL integral intensity and (b) peak luminescence of WLED with different driving currents.

The PL intensity and drive current follow a linear relationship equation:

$$y = ax + b$$
 \\* MERGEFORMAT (6)

*x* is the drive current, a and b are constants.

| Experiment<br>number | Reaction<br>temperature | Reaction time | Eu to Cs molar feed<br>ratio |
|----------------------|-------------------------|---------------|------------------------------|
| 1                    | 280 °C                  | 45 min        | 4:1                          |
| 2                    | 280 °C                  | 45 min        | 4:2                          |
| 3                    | 280 °C                  | 45 min        | 4:3                          |
| 4                    | 280 °C                  | 45 min        | 4:4                          |
| 5                    | 240 °C                  | 45 min        | 4:1                          |
| 6                    | 260 °C                  | 45 min        | 4:1                          |
| 7                    | 280 °C                  | 45 min        | 4:1                          |
| 8                    | 300 °C                  | 45 min        | 4:1                          |
| 9                    | 280 °C                  | 15 min        | 4:1                          |
| 10                   | 280 °C                  | 30 min        | 4:1                          |
| 11                   | 280 °C                  | 45 min        | 4:1                          |
| 12                   | 280 °C                  | 60 min        | 4:1                          |

 Table S1 Summary of different experimental conditions.

| Fluorescent materials                                     | Emission<br>peak<br>(nm) | PLQY<br>(%) | exciton<br>lifetime<br>(ns) | Huang-<br>Rhys<br>factor | Ref.      |
|-----------------------------------------------------------|--------------------------|-------------|-----------------------------|--------------------------|-----------|
| CsPbCl <sub>3</sub> NCs                                   | 460                      | 80          | _                           | _                        | 2         |
| CsPbBr <sub>3</sub> NCs                                   | 454                      | 70          | _                           | _                        | 3         |
| CsPb(Br <sub>x</sub> Cl <sub>1-x</sub> ) <sub>3</sub> NCs | 488                      | 82.19       | 32.9                        | _                        | 4         |
| CsPbBr <sub>2</sub> Cl NCs                                | 475                      | 37.2        | 13.21                       | -                        | 5         |
| CsPbBr <sub>3</sub> NCs                                   | 459                      | 90          | 3.84                        | _                        | 6         |
| CsPb(Br <sub>x</sub> Cl <sub>1-x</sub> ) <sub>3</sub> NCs | 488                      | 82.19       | 5.27                        | _                        | 7         |
| CsPb(Br <sub>x</sub> Cl <sub>1-x</sub> ) <sub>3</sub> NCs | 488                      | 95          | 21.08                       | _                        | 8         |
| CsPbBr <sub>3</sub> NCs                                   | _                        | _           | -                           | 0.38                     | 10        |
| CsPbBr <sub>3</sub> NCs                                   | -                        | _           | -                           | 0.38                     | 11        |
| CsEuBr <sub>3</sub> NCs                                   | 443                      | 93.51       | 455.8                       | 1.54                     | This work |

Table S3 Comparison of the mobility and exciton activation energy of CsEuBr<sub>3</sub> NCs with lead-

based perovskites.

| Fluorescent materials                                         | hole<br>mobility<br>(cm <sup>2</sup> V <sup>-1</sup><br>s <sup>-1</sup> ) | electron mobility<br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | exciton<br>binding<br>energy<br>(meV) | Ref.      |
|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------|-----------|
| CsPb(Br <sub>x</sub> /Cl <sub>1-x</sub> ) <sub>3</sub> NCs    | 1.06×10 <sup>-9</sup>                                                     | 1.74×10 <sup>-10</sup>                                                  |                                       | 8         |
| CsPbl <sub>3</sub> NCs                                        | 2.03×10 <sup>-2</sup>                                                     | 1.87×10 <sup>-2</sup>                                                   |                                       | 9         |
| FAPbBr <sub>3</sub> NCs                                       | $8.91 \times 10^{-9}$                                                     | 5.67 × 10 <sup>-8</sup>                                                 |                                       | 12        |
| CsPbBr <sub>3</sub> NCs                                       | 2.43×10 <sup>-3</sup>                                                     |                                                                         |                                       | 13        |
| CsPbI <sub>3</sub> NCs                                        | 2.3×10 <sup>-1</sup>                                                      | 5×10 <sup>-1</sup>                                                      |                                       | 14        |
| CsPbBr <sub>3</sub> NCs                                       |                                                                           |                                                                         | 47                                    | 15        |
| CsPb(Br <sub>0.75</sub> Cl <sub>0.25</sub> ) <sub>3</sub> NCs |                                                                           |                                                                         | 50.44                                 | 16        |
| FAPbBr <sub>3</sub> NCs                                       |                                                                           |                                                                         | 57.55                                 | 17        |
| CsPbBr <sub>3</sub> NCs                                       |                                                                           |                                                                         | 43.7                                  | 18        |
| CsPbBr <sub>3</sub> NCs                                       |                                                                           |                                                                         | 38                                    | 19        |
| CsPbBr <sub>3</sub> NCs                                       |                                                                           |                                                                         | 40                                    | 20        |
| CsPbBr <sub>3</sub> NCs                                       |                                                                           |                                                                         | 40                                    | 21        |
| CsEuBr <sub>3</sub> NCs                                       | 3×10 <sup>-1</sup>                                                        | 5.0                                                                     | 49.69                                 | This work |

In terms of mobility parameters, Luo. et al. calculated the hole and electron mobilities of  $CsEuBr_3$  to be 0.30 and 5.0 cm<sup>2</sup> V<sup>-1</sup> s <sup>-1</sup>,<sup>22</sup> higher than those of the currently reported lead-based perovskite NCs. The exciton binding energy of  $CsEuBr_3$  NCs is 49.69 meV, similar to lead-based perovskites NCs. Moderate exciton binding energy creates better conditions for carrier transport and exciton coincidence.

Table S4 The color gamut of WLEDs.

| Fluorescent materials                                              | Color gamut (% NTSC<br>in CIE 1931) | Ref.      |
|--------------------------------------------------------------------|-------------------------------------|-----------|
| CsPbX <sub>3</sub>                                                 | 103                                 | 23        |
| A <sub>2</sub> NaScF <sub>6</sub> (A = K, Rb, Cs):Mn <sup>4+</sup> | 108.4                               | 24        |
| CsPbBr <sub>3</sub> :Sr/PbBr(OH)/molecular                         | 124                                 | 25        |
| CsPbX <sub>3</sub> @glass                                          | 127                                 | 26        |
| Cs₃MnBr₅                                                           | 104                                 | 27        |
| Cs <sub>4</sub> PbBr <sub>6</sub>                                  | 121.3                               | 28        |
| CsPb(Br/l) <sub>3</sub>                                            | 126                                 | 29        |
| h-BN@(PMA) <sub>2</sub> MA <sub>n-1</sub> PbnBr <sub>3n+1</sub>    | 106.1                               | 30        |
| CsEuBr <sub>3</sub> NCs                                            | 127.1                               | This work |

### Notes and references

1 M. Liao, F. Wu, J. Wang, D. Zhu, X. Zhang, H. Dong, Z. Lin, M. Wen and Z. Mu, ACS Appl. Mater. Interfaces, 2022, **14**, 47892

2 B.-B. Zhang, S. Yuan, J.-P. Ma, Y. Zhou, J. Hou, X. Chen, W. Zheng, H. Shen, X.-C. Wang, B. Sun, O. M. Bakr, L.-S. Liao and H.-T. Sun, *J. Am. Chem. Soc.*, 2019, **141**, 15423.

3 Y. S. Shin, Y. J. Yoon, K. T. Lee, J. Jeong, S. Y. Park, G.-H. Kim and J. Y. Kim, ACS Appl. Mater. Interfaces, 2019, **11**, 23401.

4 S. Zhang, H. Liu, X. Li and S. Wang, *Nano Energy*, 2020, **77**, 105302.

5 W. H. Jeong, Z. Yu, L. Gregori, J. Yang, S. R. Ha, J. W. Jang, H. Song, J. H. Park, E. D. Jung, M. H. Song, S. H. Park, H. J. Snaith, A. Boretti, F. De Angelis, D. Meggiolaro, J. Lee, H. Choi and B. R. Lee, *J. Mater. Chem. A*, 2021, **9**, 26750.

6 Y. Xie, B. Peng, I. Bravić, Y. Yu, Y. Dong, R. Liang, Q. Ou, B. Monserrat and S. Zhang, *Adv. Sci.*, 2020, **7**, 2001698.

7 G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef and O. F. Mohammed, *ACS Energy Lett.*, 2018, **3**, 2301.

8 H. Zhu, G. Tong, J. Li, E. Xu, X. Tao, Y. Sheng, J. Tang and Y. Jiang, *Adv. Mater.*, 2022, **34**, 2205092.

9 F. Zhao, H. Duan, S. Li, J. Pan, W. Shen, S. Li, Q. Zhang, Y. Wang and L. Liao, *Angew. Chem. Int. Ed.*, 2023, **62**, e202311089.

10 Lao. X, Yang. Z, Su. Z, Bao. Y, Zhang. J, Wang. X, Cui. X, Wang. M, Yao. X and Xu. S J. Phys. Chem. C, 2019, **123**, 5128.

11 C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. Vanmaekelbergh and A. Y. Silov, *ACS Nano*, 2017, **11**, 11024.

12 H. Chen, L. Fan, R. Zhang, C. Bao, H. Zhao, W. Xiang, W. Liu, G. Niu, R. Guo, L. Zhang and L. Wang, *Adv. Opt. Mater.*, 2020, **8**, 1901390.

13 Y. Gao, Y. Liu, F. Zhang, X. Bao, Z. Xu, X. Bai, M. Lu, Y. Wu, Z. Wu, Y. Zhang, Q. Wang, X. Gao, Y. Wang, Z. Shi, J. Hu, W. W. Yu and Y. Zhang, *Adv. Mater.*, 2022, **34**, 2207445.

14 E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard and J. M. Luther, *Sci. Adv.*, 2017, **3**, eaao4204.

15 B. T. Diroll, H. Zhou and R. D. Schaller, Adv. Funct. Mater., 2018, 28, 1800945.

16 H. M. Ghaithan, S. M. H. Qaid, Z. A. Alahmed, M. Hezam, A. Lyras, M. Amer and A. S. Aldwayyan, *J. Phys. Chem. C*, 2021, **125**, 886.

17 D. Han, M. Imran, M. Zhang, S. Chang, X. Wu, X. Zhang, J. Tang, M. Wang, S. Ali, X. Li, G. Yu, J. Han, L. Wang, B. Zou and H. Zhong, *ACS Nano*, 2018, **12**, 8808.

18 Z. Shi, Y. Li, Y. Zhang, Y. Chen, X. Li, D. Wu, T. Xu, C. Shan and G. Du, *Nano Lett.*, 2017, **17**, 313.

19 Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum and Q. Xiong, *Adv. Funct. Mater.*, 2016, **26**, 6238.

20 X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song and H. Zeng, *Adv. Funct. Mater.*, 2016, **26**, 2435.

21 B. Ai, C. Liu, Z. Deng, J. Wang, J. Han and X. Zhao, *Phys. Chem. Chem. Phys.*, 2017, **19**, 17349.

22 J. Luo, L. Yang, Z. Tan, W. Xie, Q. Sun, J. Li, P. Du, Q. Xiao, L. Wang, X. Zhao, G. Niu, L. Gao, S. Jin and J. Tang, *Adv. Mater.*, 2021, **33**, 2101903.

23 J. Lin, Y. Lu, X. Li, F. Huang, C. Yang, M. Liu, N. Jiang and D. Chen, *ACS Energy Lett.*, 2021, **6**, 519.

24 Y. Y. Zhou, E. H. Song, M. G. Brik, Y. J. Wang, T. Hu, Z. G. Xia and Q. Y. Zhang, *J. Mater. Chem. C*, 2019, **7**, 9203.

25 T. Xuan, S. Guo, W. Bai, T. Zhou, L. Wang, R.-J. Xie, Nano Energy, 2022, 95, 107003.

26 S. Chen, J. Lin, S. Zheng, Y. Zheng and D. Chen, *Adv. Funct. Mater.*, 2023, **33**, 2213442.

27 B. Su, M. S. Molokeev and Z. Xia, J. Mater. Chem. C, 2019, 7, 11220.

28 X. Chen, F. Zhang, Y. Ge, L. Shi, S. Huang, J. Tang, Z. Lv, L. Zhang, B. Zou and H. Zhong, *Adv. Funct. Mater.*, 2018, **28**, 1706567.

29 Q. Wang, Y. Tong, M. Yang, H. Ye, X. Liang, X. Wang and W. Xiang, *J. Mater. Sci. Technol.*, 2022, **121**, 140.

30 G. Zhou, Y. Xu and Z. Xia, ACS Appl. Mater. Interfaces, 2020, 12, 27386.