Supporting Information

Realizing efficient broadband near-infrared emission and multimode photoluminescence switching via coordination structure modulation in Sb³⁺ doped 0D organic metal chlorides

Shuiyue Yu,^a Hui Peng,^{a*} Qilin Wei,^b Tongzhou Li,^a Weiguo Huang,^a Xuefei He,^a Zhentao Du,^a Jialong Zhao,^a and Bingsuo Zou^{a*}

^aState Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China. ^bSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

Address correspondence to: penghuimaterial@163.com; zoubs@gxu.edu.cn

Experimental methods

Materials: Manganese chloride (MnCl₂, 99%), cadmium dichloride hemipentahydrate (CdCl₂·2.5H2O), zinc chloride (ZnCl₂, 98%), ethyl-triphenylphosphonium chloride (C₂₀H₂₀PCl, 98%), antimony trichloride (SbCl₃, 99.5%), N, N-dimethylformamide (DMF, 99.8%), ethyl ether (Et₂O, 99.5%), and ethanol (EtOH, 99.5%) were purchased from Macklin reagent.

Synthesis of $(C_{20}H_{20}P)_2$ SbCl₅·EtOH single crystals (SCs): Typically, 1 mmol SbCl₃ and 2 mmol of $C_{20}H_{20}PCl$ were dissolved in 3 mL of EtOH at 100 °C to form transparent solution. Subsequently, the above solution was left to stand at RT for 24 hours, and the bulk transparent crystals could be harvested.

Synthesis of $(C_{20}H_{20}P)_2MCl_4$ (M = Mn, Zn, Cd) and Sb³⁺-doped $(C_{20}H_{20}P)_2MCl_4$ SCs: $(C_{20}H_{20}P)_2MCl_4$ SCs were synthesized by anti-solvent recrystallization method. Typically, 1-*x* mmol of MCl₂ and 2 mmol of $C_{20}H_{20}PCl$ were dissolved in 2 mL DMF at 60 °C to form transparent solution. Then, $(C_{20}H_{20}P)_2MCl_4$ SCs can be obtained by diffusing Et₂O into the precursor solution at RT. For synthesizing Sb³⁺-doped $(C_{20}H_{20}P)_2MCl_4$ SCs, *x* mmol SbCl₃ was used under otherwise identical conditions.

Characterization: The structure information of the samples was determined by single crystal Xray diffraction (SCXRD, IPDS II-STOE). The morphology was characterized by scanning electron microscopy (SEM) (JEOL, JSM-6360LV). The elemental composition and distribution of the samples were measured by energy-dispersive spectrometry (EDS, Horiba 7021-H). The elemental content of Sb³⁺ was determined inductively coupled plasma optical emission spectrometry (ICP-MS, CONTRAA-700, Analytik Jena Co., GER). The powder XRD (PXRD) patterns were collected by a Bruker D8 discover X-ray diffractometer. X-ray photoelectron spectroscopy (XPS) spectra were collected through Thermo ESCALAB 250XI instrument. Absorption spectra were obtained by UV 3600 plus instrument, where BaSO₄ was used as the reference sample. PL and PLE spectra were measured via Edinburgh FS5 spectrometer. Photoluminescence quantum yield (PLQY) data were collected by Edinburgh FLS1000 spectrometer. Temperature-dependent PL spectra were measured by HORIBA Fluorolog-QM instrument. Thermal stability was evaluated by Discovery TGA 55 instrument in N₂ atmosphere.

NIR pc-LEDs Fabrication: First, the as-synthesized Sb^{3+} -doped $(C_{20}H_{20}P)_2MCl_4$ powder were uniformly mixed with epoxy resin, and then coated on a 365 nm chip. Subsequently, the EL spectra of the NIR pc-LEDs were collected using Hangzhou Hopoo HPCS6500 instrument.

the ground state and excited state.							
$(C_{20}H_{20}P)_2SbCl_5\cdot EtOH$							
	Sb-	Sb-	Sb-	Sb-	Sb-		
	Cl1(Å)	Cl2(Å)	Cl3(Å)	Cl4(Å)	Cl5(Å)	Δd	
Ground state	2.365	2.619	2.614	2.619	2.614	1.741×10^{-3}	
Excited state	2.389	2.677	2.669	2.673	2.644	2.086×10^{-3}	
			Sb ³⁺ -1				
	Sb-	Sb-	Sb-	Sb-		A 1	
	Cl1(Å)	Cl2(Å)	Cl3(Å)	Cl4(Å)	Δd		
Ground state	2.359	2.353	2.380	2.348	2.73	8×10^{-5}	
Excited state	2.657	2.613	2.645	2.631	3.87	8×10^{-5}	
Sb ³⁺ -2							
	Sb-	Sb-	Sb-	Sb-	Δd		
	Cl1(Å)	Cl2(Å)	Cl3(Å)	Cl4(Å)			
Ground state	2.312	2.340	2.320	2.325	1.79	0.03×10^{-5}	
Excited state	2.652	2.615	2.637	2.633	2.53	1×10^{-5}	
Sb ³⁺ - 3							
	Sb-	Sb-	Sb-	Sb-			
	Cl1(Å)	Cl2(Å)	Cl3(Å)	Cl4(Å)	Δd		
Ground state	2.465	2.497	2.465	2.483	2.87	2×10^{-5}	
Excited state	2.736	2.711	2.739	2.760	4.04	45× 10 ⁻⁵	

Table S1. Comparison of the bond lengths of $(C_{20}H_{20}P)_2SbCl_5 \cdot EtOH$ and Sb^{3+} -doped samples in the ground state and excited state.

Note: Table S1 shows the bond lengths of $(C_{20}H_{20}P)_2SbCl_5 \cdot EtOH$ and Sb^{3+} -doped samples in the ground state and excited state. The lattice deformation parameters (Δd) in the ground state and excited state for pure Sb(III)-based compound and Sb³⁺-doped samples were also given in Table S1. Moreover, the excited state lattice distortion degree (η) was calculated via the following equation: (1)

$$\eta = \frac{\Delta d_{ES} - \Delta d_{GS}}{\Delta d_{GS}} \times 100\%$$
(1)

where Δd_{ES} and Δd_{GS} are the lattice deformation parameters (Δd) in the ground state and excited state, respectively. Here, the calculated η of ($C_{20}H_{20}P$)₂SbCl₅·EtOH, Sb³⁺-1, Sb³⁺-2, and Sb³⁺-3 are 19.8%, 41.6%, 41.2%, and 40.8%, respectively. Clearly, the values of η for the Sb³⁺-doped samples are much larger than pure Sb(III)-based compound, resulting in a larger Stokes shift in Sb³⁺-doped samples and further enabling us to obtain NIR emission.

Empirical formula	$(C_{20}H_{20}P)_2MnCl_4$	$(C_{20}H_{20}P)_2ZnCl_4$	$(C_{20}H_{20}P)_2CdCl_4$
Chemical formula	$C_{40}H_{40}Cl_4P_2Mn$	$C_{40}H_{40}Cl_4P_2Zn$	$C_{40}H_{40}Cl_4P_2Cd$
Formula weight	779.40	789.83	836.86
Temperature (K)	297.19	296.15	296.15
Crystal system	monoclinic	monoclinic	monoclinic
Space group	Cc	Cc	Cc
a (Å)	12.223(3)	12.180(2)	12.2339(14)
b (Å)	20.914(4)	20.741(3)	21.044(2)
c (Å)	16.393(3)	16.353(3)	16.5713(19)
a (deg)	90	90	90
β (deg)	110.772(5)	110.644(3)	112.272(2)
γ (deg)	90	90	90
Volume (Å ³)	3918.1(14)	3865.9(11)	3948.0(8)
Z	4	4	4
Density (calculated) (g·cm ⁻³)	2.039	1.357	1.408
Absorption coefficient (mm ⁻¹)	3.392	1.022	0.932
Data/restraints/parameters	7697/2/426	7788/2/426	6450/2/426
Goodness of fit on F ²	1.017	0.966	1.059
Final R indexes [I>=2σ (I)]	$R_1 = 0.0423,$ $wR_2 = 0.0951$	$R_1 = 0.0426,$ w $R_2 = 0.0780$	$R_1 = 0.0313, wR_2 = 0.0741$
Final R indexes [all data]	$R_1 = 0.0599,$ w $R_2 = 0.1031$	$R_1 = 0.0662,$ w $R_2 = 0.0874$	$R_1 = 0.0377, wR_2 = 0.0771$

Table S2. Detailed crystallographic data for $(C_{20}H_{20}P)_2MnCl_4$, $(C_{20}H_{20}P)_2ZnCl_4$, and $(C_{20}H_{20}P)_2CdCl_4$.

	Space Group	Cell Parameters (Å) Cell Volume (Å)	R_{wp}, R_p, χ^2
25%Sb ³⁺ -doped		a=12.223(3) b=20.914(4)	4.37%, 3.08%,
1	С1с1	c= 16.393(3)	1.90
		V=3918.1(14)	
		a=12.180(2)	
20%Sb ³⁺ -doped	C $[a]$	b=20.741(3)	7.62%, 5.34%,
2	0101	<i>C l c l</i> c=16.353(3)	3.21
		V=3865.9(11)	
		a=12.2339(14)	
20%Sb ³⁺ -doped	С1с1	b=21.044(2)	7.05%, 4.75%,
3	C T C T	c=16.5713(19)	3.13
		V=3948.0(8)	

Table S3. Main parameters of processing and refinement of the $x\%Sb:(C_{20}H_{20}P)_2MCl_4$ (M = Mn,Zn, Cd) samples.

Table S4. Comparison of element concentrations obtained from EDS analysis of x**Sb**³⁺-1.

Element	5%	10%	15%	20%	25%
Cl (%)	79.45	79.33	79.23	80.14	80.03
Sb (%)	0.93	1.41	2.37	2.73	3.46
Mn (%)	19.62	19.26	18.40	17.13	16.51

Table S5. Comparison of element concentrations obtained from EDS analysis of x**Sb**³⁺-2.

Element	5%	10%	15%	20%	25%
Cl (%)	79.35	79.53	79.72	79.92	80.16
Sb (%)	0.37	0.62	0.75	0.92	1.21
Zn (%)	20.28	19.85	19.53	19.16	18.63

Table S6. Comparison of element concentrations obtained from EDS analysis of x**Sb**³⁺-**3**.

Table 50. Comparison of element concentrations obtained from EDS analysis of x50 -5.						
Element	5%	10%	15%	20%	25%	
Cl (%)	79.42	79.10	79.52	79.87	80.24	
Sb (%)	0.86	1.29	1.59	1.86	2.03	
Cd (%)	19.72	19.61	18.89	18.27	17.73	

Table S7. The actual element content of Sb³⁺-doped (C₂₀H₂₀P)₂MCl₄ (M = Mn, Zn, Cd) measured by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES).

Samples	Sb:(M + Sb)	Nominal/mol% (Sb)	Actual/mol% (Sb)
5%Sb ³⁺ :(C ₂₀ H ₂₀ P) ₂ MnCl ₄	5:90	5	0.98
15%Sb ³⁺ :(C ₂₀ H ₂₀ P) ₂ MnCl ₄	15:85	25	2.43
25%Sb ³⁺ :(C ₂₀ H ₂₀ P) ₂ MnCl ₄	25:75	25	3.51
$15\%Sb^{3+}:(C_{20}H_{20}P)_2ZnCl_4$	15:85	15	0.77
$20\% Sb^{3+}:(C_{20}H_{20}P)_2ZnCl_4$	20:80	20	0.96
$25\%Sb^{3+}:(C_{20}H_{20}P)_2ZnCl_4$	25:75	25	1.27
$15\%Sb^{3+}:(C_{20}H_{20}P)_2CdCl_4$	15:85	15	1.62
$20\%Sb^{3+}:(C_{20}H_{20}P)_2CdCl_4$	20:80	20	1.89
$25\%Sb^{3+}:(C_{20}H_{20}P)_2CdCl_4$	25:75	25	2.11

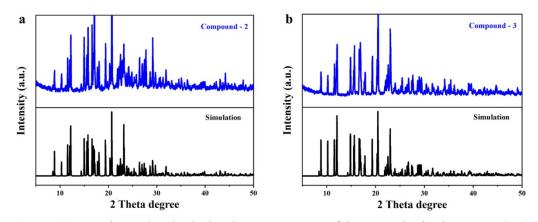


Figure S1. Experimental and calculated PXRD patterns of the as-synthesized compounds, a) Compound 2, b) and Compound 3.

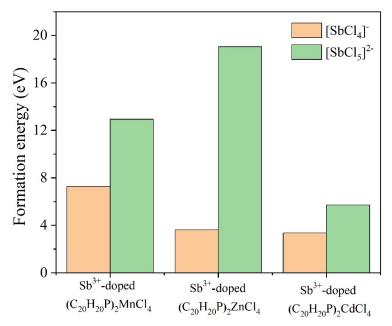


Figure S2. Formation energies of [SbCl₄]⁻ and [SbCl₅]²⁻ in the host lattice.

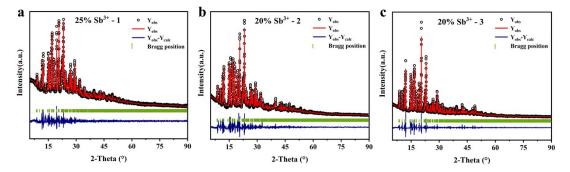


Figure S3. Rietveld refinement plot of PXRD; (a) 25%Sb³⁺-doped 1, b) 20%Sb³⁺-doped 2, c) 20%Sb³⁺-doped 3.

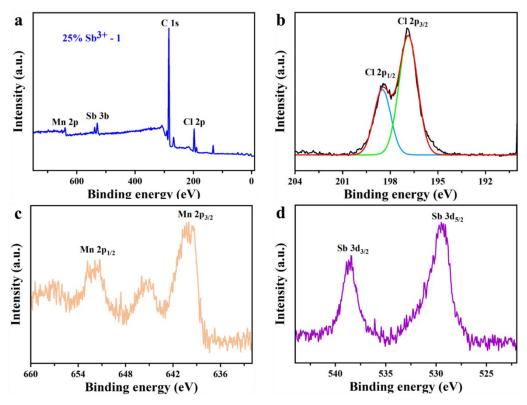


Figure S4. a) XPS spectrum of 25%Sb³⁺-doped 1 and the corresponding high-resolution XPS spectra of b) Cl 2p, c) Mn 2p, d) and Sb 3d.

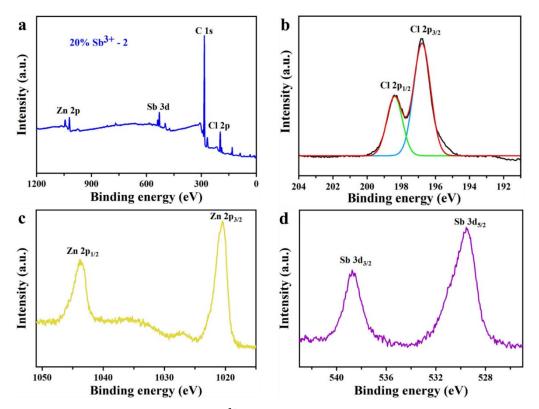


Figure S5. a) XPS spectrum of 20%Sb³⁺-doped **2** and the corresponding high-resolution XPS spectra of b) Cl 2p, c) Zn 2p, d) and Sb 3d.

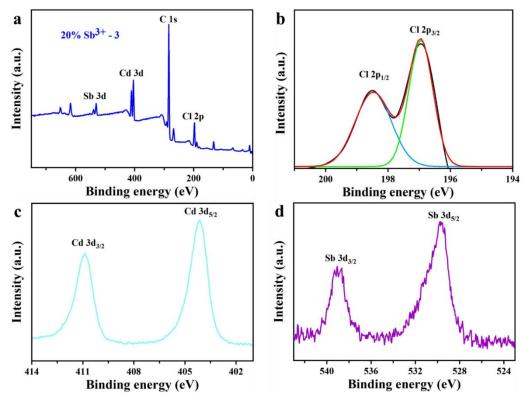


Figure S6. a) XPS spectrum of 20%Sb³⁺-doped **3** and the corresponding high-resolution XPS spectra of b) Cl 2p, c) Cd 3d, d) and Sb 3d.

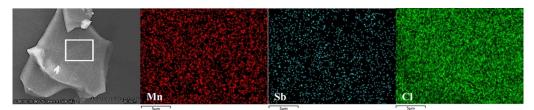
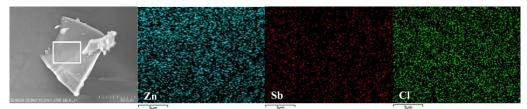



Figure S7. SEM image of 25%Sb³⁺-doped 1 and the element mapping images of Mn, Sb, and Cl respectively.

Figure S8. SEM image of 20%Sb³⁺-doped **2** and the element mapping images of Zn, Sb, and Cl respectively.

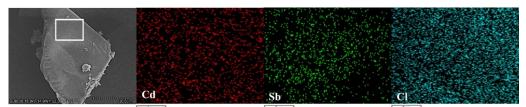
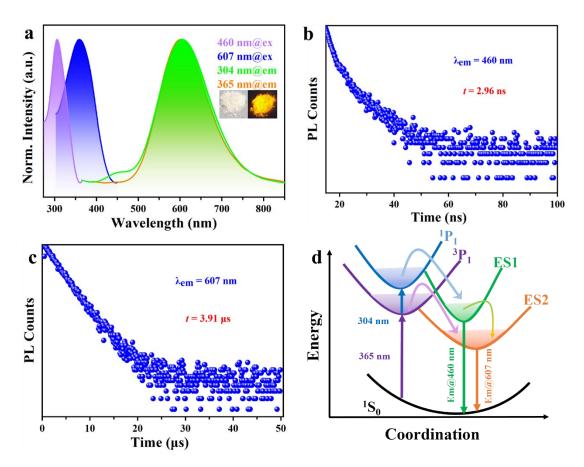



Figure S9. SEM image of 20%Sb³⁺-doped **3** and the element mapping images of Cd, Sb, Cl respectively.

Figure S10. a) PLE and PL spectra of $(C_{20}H_{20}P)_2SbCl_5 \cdot EtOH$. PL decay lifetimes of $(C_{20}H_{20}P)_2SbCl_5 \cdot EtOH$ monitored at b) 460 nm, c) and 607 nm. d) Possible photophysical processes of $(C_{20}H_{20}P)_2SbCl_5 \cdot EtOH$.

Note : The possible photophysical processes of $(C_{20}H_{20}P)_2SbCl_5$ ·EtOH can be summarized as follow:

For Sb³⁺ with 5s² electron configuration, the ground state (GS) is called ${}^{1}S_{0}$, while the excited state split into four energy levels, namely, ${}^{1}P_{1}$ and ${}^{3}P_{n}$ (n = 0, 1, 2). The transitions ${}^{1}S_{0}\rightarrow{}^{3}P_{0}$ or ${}^{1}S_{0}\rightarrow{}^{3}P_{2}$ are forbidden, and the transitions of ${}^{1}S_{0}\rightarrow{}^{3}P_{1}$ or ${}^{1}S_{0}\rightarrow{}^{1}P_{1}$ are parity-allowed owing to spin-orbit coupling.¹⁻³ Owing to the large separation of ${}^{3}P_{1}$ and ${}^{1}P_{1}$, they can both couple with different multiphonons to form different STEs, i.e., singlet and triplet STEs in [SbCl₅]²⁻ units (Figure S9d). Therefore, the possible photophysical process of pure Sb (III)-based compound can summarized as follow: Upon HE photoexcitation (e.g., 304 nm), electrons are excited to the high-energy excited states of ${}^{3}P_{1}$ and ${}^{1}P_{1}$ states. Then, the excited electrons are rapidly transferred into LE excited states ES1 and ES2 via intersystem crossing, and then return to ground state of ${}^{1}S_{0}$. Finally, the narrow HE emission band (460 nm) and broad LE emission band (607 nm) can be obtained via the radiative recombination from singlet and triplet STEs in [SbCl₅]²⁻ units. More particularly, only a single broad emission band at 607 nm with a lager stokes shift can be obtained under LE irradiation (e.g., 365 nm), which is derived from the triplet STE emission.

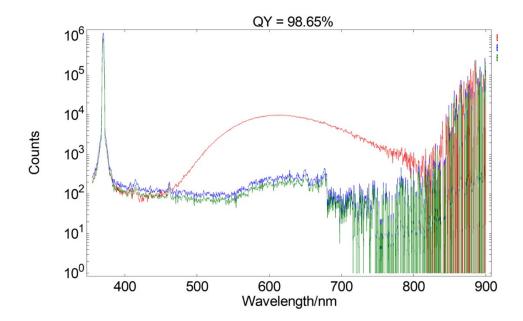


Figure S11. PLQY of (C₂₀H₂₀P)₂SbCl₅·EtOH.

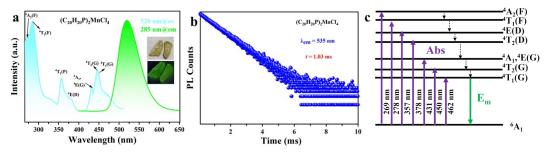


Figure S12. (a) PLE and PL spectra of $(C_{20}H_{20}P)_2MnCl_4$. (b) PL decay lifetimes of $(C_{20}H_{20}P)_2MnCl_4$. (c) Schematic diagram of the energy absorption, non-radiative relaxation, and emission processes in $(C_{20}H_{20}P)_2MnCl_4$.

Figure S13. Optical images of Compound 2.

Figure S14. Optical images of Compound 3.

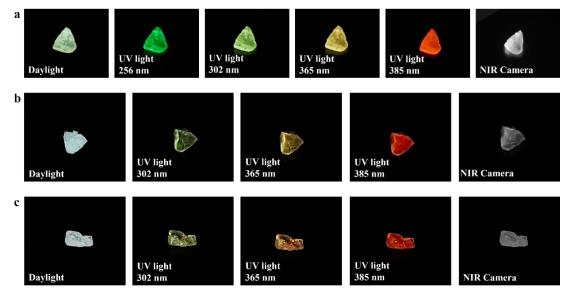


Figure S15. Optical images of a) 25%Sb³⁺-doped 1, b) 20%Sb³⁺-doped 2, and c) 20%Sb³⁺-doped 3 single crystals.

Figure S16. a) Emission spectra of 25%Sb³⁺-doped 1 under different excitation wavelengths. b) CIE coordinates of 25%Sb³⁺-doped 1 under different excitation wavelengths.

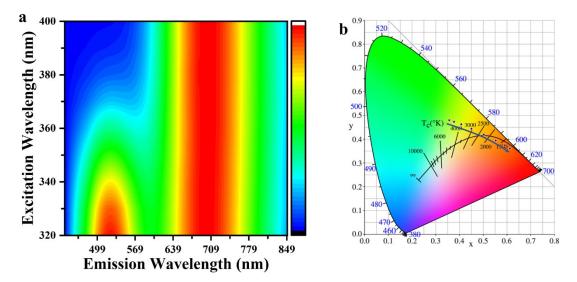


Figure S17. a) Emission spectra of 20%Sb³⁺-doped **2** under different excitation wavelengths. b) CIE coordinates of 20%Sb³⁺-doped **2** under different excitation wavelengths.

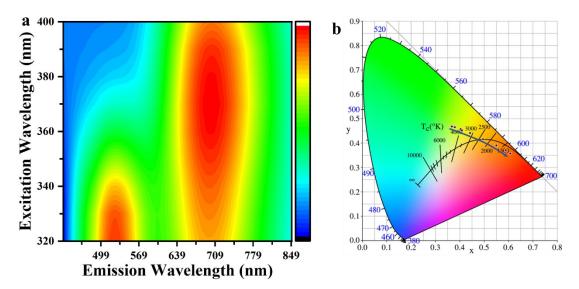


Figure S18. a) Emission spectra of 20%Sb³⁺-doped **3** under different excitation wavelengths. b) CIE coordinates of 20%Sb³⁺-doped **3** under different excitation wavelengths.

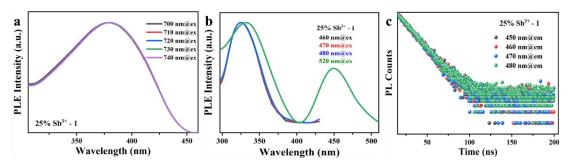


Figure S19. a) Excitation spectra of 25%Sb³⁺-doped 1 monitored at 700-740 nm emission wavelengths, b) and 460-520 nm emission wavelengths. c) PL decay lifetimes of 25%Sb³⁺-doped 1 monitored at 450-480 nm emission wavelengths.

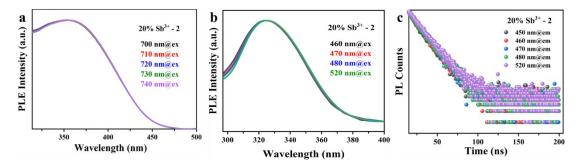


Figure S20. a) Excitation spectra of 20%Sb³⁺-doped 2 monitored at 700-740 nm emission wavelengths, b) and 460-520 nm emission wavelengths. c) PL decay lifetimes of 20%Sb³⁺-doped 2 monitored at 460-520 nm emission wavelengths.

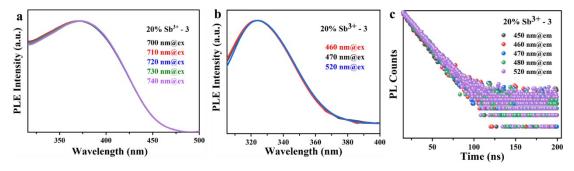


Figure S21. a) Excitation spectra of 20%Sb³⁺-doped 3 monitored at 700-740 nm emission wavelengths, b) and 460-520 nm emission wavelengths. c) PL decay lifetimes of 20%Sb³⁺-doped 3 monitored at 460-520 nm emission wavelengths.

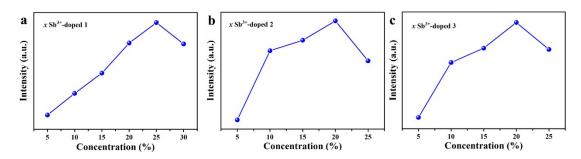


Figure S22. Emission intensity of a) $x\%Sb^{3+}$ -doped 1, b) $x\%Sb^{3+}$ -doped 2, c) and $x\%Sb^{3+}$ -doped 3 under different Sb³⁺-doping concentrations.

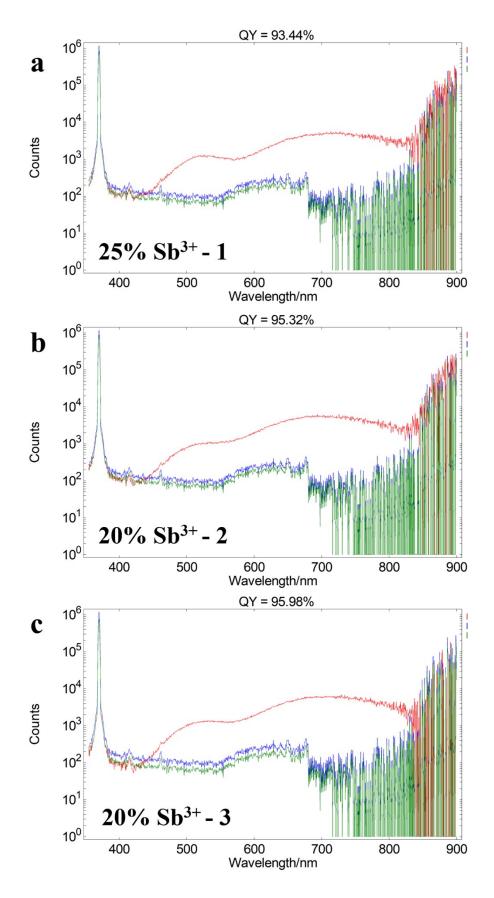


Figure S23. PLQY of a) 25%Sb³⁺-doped 1, b) 20%Sb³⁺-doped 2, c) and 20%Sb³⁺-doped 3.

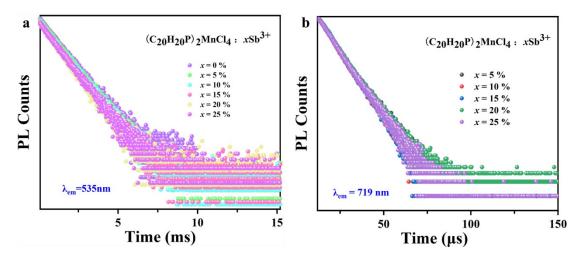


Figure S24. PL decay lifetimes of x%Sb³⁺-1 monitored at a) 535 nm, b) and 719 nm, respectively.

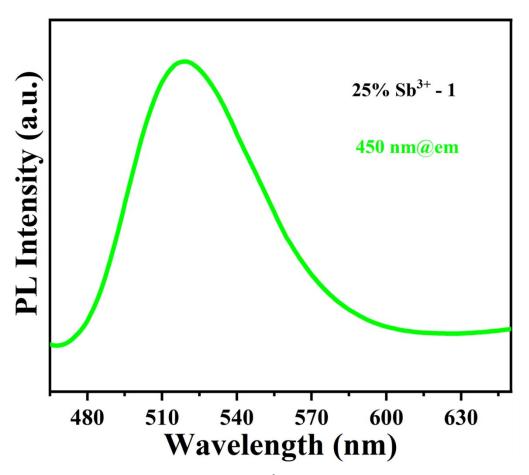


Figure S25. Emission spectra of 25%Sb³⁺-doped 1 under 450 nm excitation.

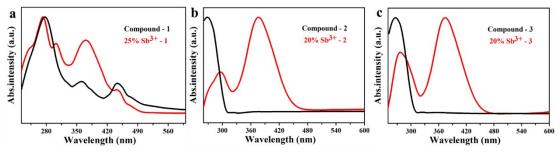


Figure S26. Absorption spectra of a) compound 1, 25%Sb³⁺-doped 1, b) compound 2, 20%Sb³⁺-doped 2, c) and compound 3, 20%Sb³⁺-doped 3.

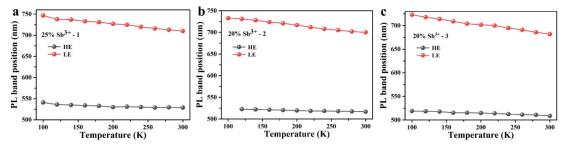


Figure 27. Temperature-dependent HE and LE band positions of a) 25%Sb³⁺-1, b) 20%Sb³⁺-2, c) and 20%Sb³⁺-3, respectively.

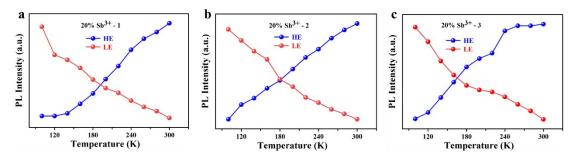


Figure 28. Temperature-dependent HE and LE band emission intensity of a) 25%Sb³⁺-1, b) 20%Sb³⁺-2, c) and 20%Sb³⁺-3, respectively.

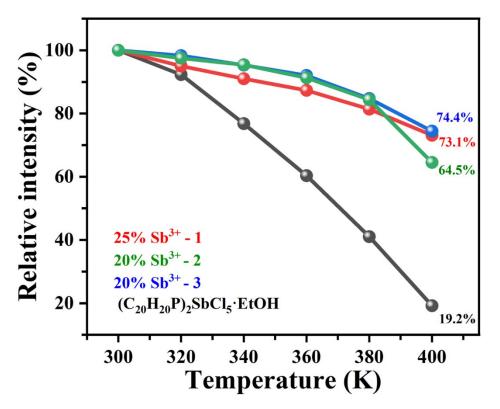


Figure S29. Temperature-dependent relative PL intensities of (C₂₀H₂₀P)₂SbCl₅·EtOH, 25%Sb³⁺doped 1, 20%Sb³⁺-doped 2, and 20%Sb³⁺-doped 3 under high temperature.

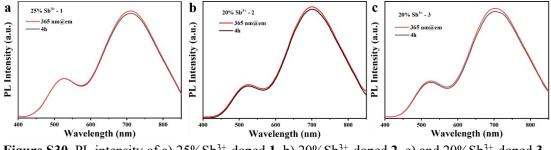


Figure S30. PL intensity of a) 25%Sb³⁺-doped 1, b) 20%Sb³⁺-doped 2, c) and 20%Sb³⁺-doped 3 under 365 nm UV lamp irradiation for 4 hours.

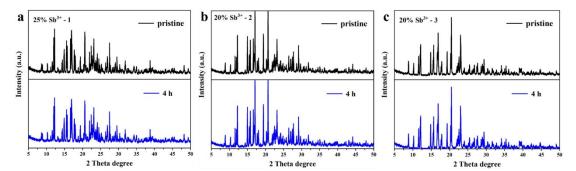


Figure S31. PXRD patterns of a) 25%Sb³⁺-doped 1, b) 20%Sb³⁺-doped 2, c) and 20%Sb³⁺-doped 3 under 365 nm UV lamp irradiation for 4 hours.

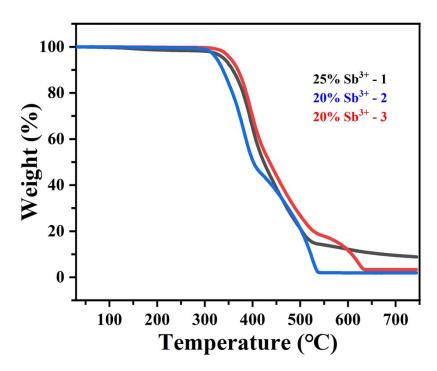


Figure S32. TGA curves of 25%Sb³⁺-1, 20%Sb³⁺-2, and 20%Sb³⁺-3.

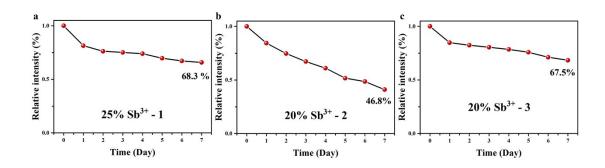


Figure S33. The commercial aging stability (humidity: 85%, temperature: 85 °C) of a) 25%Sb³⁺doped 1, b) 20%Sb³⁺-doped 2, c) 20%Sb³⁺-doped 3.

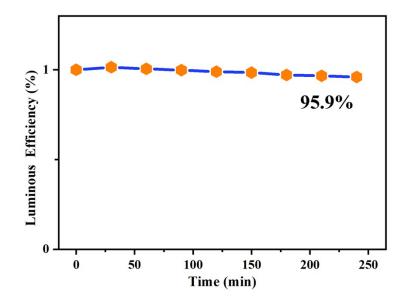
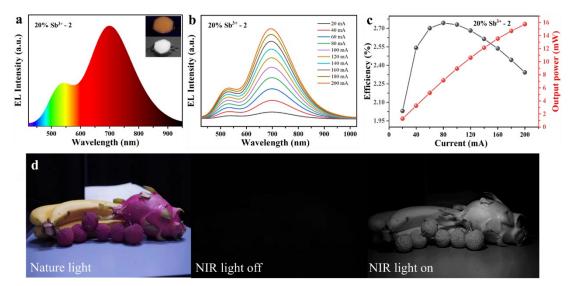
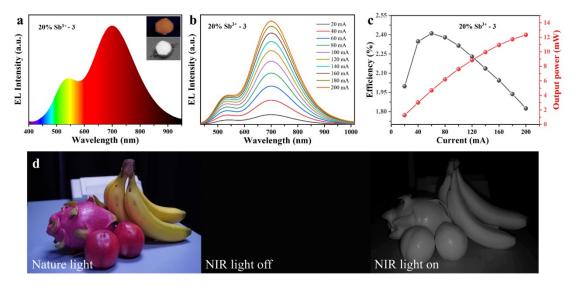




Figure S34. Operational stability of the 25%Sb³⁺-doped 1 based NIR pc-LED.

Figure 35. a) EL spectrum of 20%Sb³⁺-doped **2** under 20 mA drive current. The inset shows the optical image of as-fabricated NIR pc-LEDs taken by a visible camera (top) and a NIR (bottom) camera, respectively. b) Driven current-dependent EL spectra of the NIR pc-LED. c) Photoelectric conversion efficiency and output optical power under various drive currents of the as-fabricated device. d) Photographs of fruit under natural light (left), and NIR pc-LED is turned off (middle) and turned on (right) captured by visible camera and NIR camera, respectively.

Figure 36. a) EL spectrum of 20%Sb³⁺-doped **3** under 20 mA drive current. The inset shows the optical image of as-fabricated NIR pc-LEDs taken by a visible camera (top) and a NIR (bottom) camera, respectively. b) Driven current-dependent EL spectra of the NIR pc-LED. c) Photoelectric conversion efficiency and output optical power under various drive currents of the as-fabricated device. d) Photographs of fruit under natural light (left), and NIR pc-LED is turned off (middle) and turned on (right) captured by visible camera and NIR camera, respectively.

References

- [1] Z. Z. Zhang, J. C. Jin, L. K. Gong, Y. R. Lin, K. Z. Du, X. Y. Huang, *Dalton Trans.* 2021, 50, 3586-3592.
- [2] Y. Jing, Y. Liu, M. Li, Z. Xia, Adv. Optical Mater. 2021, 9, 2002213.
- [3] A. Biswas, R. Bakthavatsalam, B. P. Mali, V. Bahadur, C. Biswas, S. S. K. Raavi, R. G. Gonnade, J. Kundu, J. Mater. Chem. C 2021, 9, 348-358.