1	
2	Supporting Information
3	
4	
5	An Ultra-Soft Conductive Elastomer for Multifunctional Tactile Sensors with High Range
6	and Sensitivity.
7	
8	Ao Yin ^{ab} , Ruiguang Chen ^{ab} , Rui Yin ^{ab} , Shiqiang Zhou ^{ab} , Yang Ye ^{ab} , Yuxin Wang ^{ab} , Peike Wang ^{ab} ,
9	Xue Qi ^{ab} , Haipeng Liu ^{ab} , Jiang Liu ^{ab} , Suzhu Yu ^{ab*} and Jun Wei ^{abc*}
10	
11	^a Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of
12	Technology (Shenzhen), Shenzhen 518055, China
13	^b School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen),
14	Shenzhen 518055, China
15	^c State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology,
16	Harbin 150001, China
17	*Corresponding author: Suzhu Yu, Jun Wei, <i>E-mail</i> : szyu@hit.edu.cn, junwei@hit.edu.cn

- Figure S1. (a) Blended solution with 18% content PVA after 15 min. The photo of the tensile test using MST-42 of
- 22 (b) PM2 and (c) the dielectric layer.

24

Figure S2. Stress-strain curves of (a) dielectric layer with different content of ILs and (b) SCCFs with different content of PEDOT:PSS and (c) PM2 sample under different deformation rates. (d) Plot of hysteresis area and hysteresis ratio versus strain of PM2 in the strain range from 50% to 300% at a deformation rate of 0.2 mm/s.

Figure S3. (a) AC impedance spectra of the dielectric layer with different IL content. (b) The calculated 33 conductivity of the dielectric layer with different IL content.

³⁸ wearable electronics.

43 Figure S6. SEM image of (a-c) the pyramid structure of the dielectric layer and (d-f) the SCCFs electrode (PM2) at

44 different magnifications. (g-i) The cross-section image of SCCFs electrode (PM2) at different magnifications.

46

47 Figure S7. (a) Limitation of detection (LOD) of ~1.8 Pa of the SCCF-based sensor.

50 Figure S8. Images of a SCCF attached to the forearm. (a) It has no significant inflammation after one day. (b) After

51 1 hour of wearing the commercial gel electrodes, the skin has obvious erythema.

54 Figure S9. Multidirectional force detection of the SSCF-based sensor. (a) Schematic of the multifunctional force

measurement. The simulated stress distribution of the pyramid structure dielectric layer and measured

- 56 capacitance under (b) 90° , (c) 60° , and (d) 30° .

58 $\,$ Table S1 The details of various SCCFs with different PEDOT:PSS and MXene mass ratios. 59

Sample	SMDES			Polymer solution		PH1000	MXene/mg
	β-CD/g	citric acid/g	H ₂ O/g	10% PVA/g	25% GA/µL	(1.3wt%)/g	
P1	0.59	1	5	2	5	6	0
P2	0.59	1	5	2	5	13	0
P3	0.295	0.5	2.5	1	2.5	13	0
PM1	0.59	1	5	2	5	13	12
PM2	0.59	1	5	2	5	13	34
PM3	0.59	1	5	2	5	13	85
PM4	0.59	1	5	2	5	13	118

60 -