Electronic Supplementary Material (ESI) for Molecular Omics. This journal is © The Royal Society of Chemistry 2023

Biochemical and metabolic signatures are fundamental in drought adaptation in *Enterobacter* bugandensis WRS7

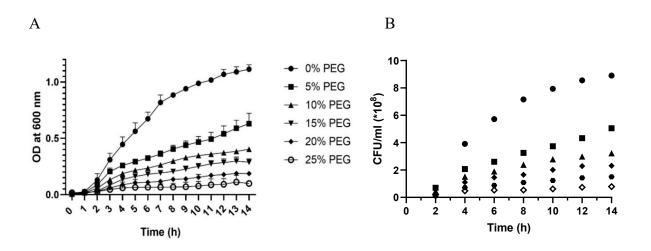
Saumya Arora^{1#}, Piyoosh K Babele^{2#} (ORCID: <u>0000-0003-4280-8465</u>), and Prabhat Nath Jha^{1*} (ORCID: <u>0000-0002-8486-0969</u>)

¹Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India

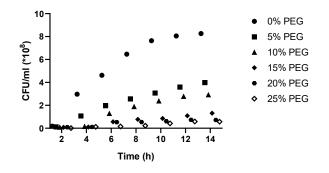
²College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India

[#]Equally Contributed

Correspondence:


Dr. Prabhat Nath Jha (Ph.D.)

Professor, Department of Biological Sciences,


Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India

Phone: Tel: +91-1596-515755, +91-9983629726 (M)

Email: prabhatjha@pilani.bits-pilani.ac

Figure S1 (A) Growth curve based on the O.D. at 600 nm and (B) CFU based on the number of viable colonies (CFU) present on agar plate, multiplied by dilution factor of *E. bugandensis* WRS7 both under normal (0 % PEG) and osmotic- stressed (5 to 25 % PEG) conditions at an interval of 1 hour. Each point represents mean \pm SE of 4 replicate samples.

Figure S2 Growth curve based on the number of viable colonies (CFU) present on agar plate, multiplied by dilution factor of *E. coli* under normal (0 % PEG) and osmotic- stressed (5 to 25 % PEG) conditions at an interval of 1 hour.

Supplementary Table S1 Membrane fatty acid composition of *Enterobacter bugandensis* WRS7 grown in normal (without PEG) and osmotic- stressed (with 10% PEG) condition. FC= Fold change w. r. t. normal condition (n= 3).

S. No.	Formula	Compound (methyl ester/ Hydrocarbon)	Name of fatty acid	Corresponding Acid	Condition	FC
1	C ₁₃ H ₂₆ O ₂	Dodecanoic acid- methyl ester	Lauric Acid	C12:0	Both	1.779
2	C ₁₅ H ₃₀ O ₂	Tetra decanoic acid- methyl ester	Myristic Acid	C14:0	Both	-0.985
3	$C_{21}H_{42}O_2$	Eicosanoic acid-methyl ester	Arachidic acid	C20:0	Non- stressed	-2.412
4	$C_{16}H_{32}O_2$	Pentadecanoic acid, methyl ester	Pentadecylic acid	C15:0	Both	1.897
5	C ₁₆ H ₃₂ O ₂	Pentadecanoic acid, 14- methyl-, methyl ester	Isopalmitic acid	C16:0	Both	0.488
6	C ₁₇ H ₃₂ O ₂	Hexadecanoic acid, methyl ester	Palmitic Acid	C16:0	Both	-1.357
7	C ₁₉ H ₃₆ O ₂	8- octadecenoic acid, methyl Ester	Oleic Acid	C18:1	Both	-1.07
8	C ₁₉ H ₃₈ O ₂	Octadecanoic acid, methyl ester	Stearic Acid	C18:0	Both	-0.550
9	C ₁₉ H ₃₈ O ₂	Heptadecanoic acid, 16- methyl-, methyl ester	Methyl isostearate	C18:0	Non- stressed	-2.455
10	C ₂₈ H ₅₆ O ₂	Heptacosanoic acid, methyl ester		C27:0	Stressed	2.497
11	C ₆ H ₁₂ O ₂	Pentanoic acid, methyl ester	valeric acid	C5:0	Stressed	2.412
12	C ₁₀ H ₂₀ O ₃	3-Hydroxydecanoic acid	3-hydroxycaproic acid	C10:0	Stressed	2.408
13	C ₂₂ H ₄₄ O ₂	Heneicosanoic acid, methyl ester		C21:0	Stressed	2.392
14	C ₁₉ H ₃₆ O ₂	Cyclopentanetridecanoic acid, methyl ester		C18:0	Stressed	2.459
15	C ₁₇ H ₃₄ O	9- Heptadecanone		C17:0	Non- stressed	-2.437
16	C ₃₀ H ₆₂	Triacontane		C30:0	Both	-0.624
17	C ₁₄ H ₃₀	Tetradecane		C14:0	Both	-0.875
18	C ₁₆ H ₃₄	Hexadecane		C16:0	Stressed	2.737
19	C ₁₇ H ₃₆	Heptadecane		C17:0	Stressed	2.484
20	C ₂₂ H ₄₆	Docosane		C22:0	Stressed	2.361
21	C ₁₂ H ₂₆	Dodecane		C12:0	Stressed	2.411
22	C ₁₇ H ₃₄	1-Heptadecene		C17:1	Both	-0.191
23	C19H38	1-Nonadecene		C19:1	Both	-0.278
24	C ₂₀ H ₄₀	9-Eicosene		C20:1	Stressed	2.410

25	C ₁₅ H ₃₀	1-Pentadecene	C15:1	Stressed	2.494
26	C ₁₂ H ₂₆ O	1-Dodecanol	C12:0	Both	-1.502
27	C ₂₇ H ₅₆ O	1-Heptacosanol	C27:0	Both	-0.336
28	C ₂₄ H ₅₀ O	1-Tetracosanol	C24:0	Both	1.206