#### Electronic Supplementary Material (ESI) for Molecular Omics. This journal is © The Royal Society of Chemistry 2023

| Supplementary Materials                                                                                                             |         |
|-------------------------------------------------------------------------------------------------------------------------------------|---------|
| Supplementary Materials                                                                                                             | 1       |
| Table S1. Study characteristics of the pan-cancer datasets                                                                          | 3       |
| Table S2. Sample size of tumor-normal pairs in each cancer type                                                                     | 4       |
| Table S3. The descriptions of 30 m6A proteins enrolled in this study                                                                | 5       |
| Table S4. The fold change of 30 m6A proteins in each cancer type                                                                    | 6       |
| Table S5. Association of 30 m6A proteins and overall survival in pan-cancer                                                         | 7       |
| Table S6. The Univariate Cox regression of m6Ascore in each cancer                                                                  | 8       |
| Table S7. The association between m6Ascore and immune checkpoint                                                                    | 9       |
| Table S8. The association between m6Ascore and 28 immune pathways                                                                   | 0       |
| Table S9. The fold change of 51 potential proteins in each cancer type                                                              | 1       |
| Table S10. The mutation frequency (%) of potential regulators across 10 cancer types         1                                      | 2       |
| Table S11. Comparison of ssGSEA enrichment score of the PI3K-AKT and mTOR pathways in high- an         low-CHORDC1 group.         1 | ıd<br>3 |
| Figure S1. Nine significant m6A prognostic proteins were correlation with PGR, ERS1 and ERBB3 in Break cancer                       | st<br>4 |
| Figure S2. Nine significant m6A prognostic proteins differed in abundance between LUAD and LUSC1                                    | 5       |
| Figure S3. Kaplan-Meier survival analysis of <i>m6Ascore</i> in CPTAC project1                                                      | 6       |
| Figure S4. The OncoScore system to evaluate 51 potential proteins1                                                                  | 7       |
| Figure S5. Somatic mutation frequency analysis of 51 potential regulators1                                                          | 8       |
| Figure S6. Kaplan-Meier survival analysis of CHORDC1 protein in CPTAC project1                                                      | 9       |
| Figure S7. Meta-analysis of the associations of CHORDC1 protein expression and overall survival in CPTA project                     | C<br>20 |
| Figure S8. Correlation between ROCK1 protein expression and CHORDC1 protein expression2                                             | 1       |
| Figure S9. The 17 known biological pathways that are associated with the CHORDC1 protein expression.2                               | 2       |

| Cancer<br>type | Cancer full name                            | Prote<br>in | RNA<br>-Seq | miRN<br>A-seq | Final | Age<br>(mean±sd)  | Gender<br>(male/female) | Death<br>proportion<br>(%) |
|----------------|---------------------------------------------|-------------|-------------|---------------|-------|-------------------|-------------------------|----------------------------|
| BRCA           | Breast Invasive<br>Carcinoma                | 116         | 120         | 101           | 94    | 60.82±13.87       | 0/94                    | 2.13                       |
| COAD           | Colon Adenocarinoma                         | 95          | 100         | 99            | 94    | 65.46±11.26       | 39/55                   | 8.51                       |
| GBM            | Glioblastoma                                | 99          | 99          | 98            | 98    | $57.81 \pm 12.53$ | 54/44                   | 67.35                      |
| HNSC           | Head and Neck<br>Squamous Cell<br>Carcinoma | 70          | 110         | 109           | 68    | 61.21±9.48        | 61/7                    | 14.71                      |
| KIRC           | Clear Cell Renal Cell<br>Carcinoma          | 160         | 110         | 110           | 110   | 60.55±12.18       | 80/30                   | 10.91                      |
| LIHC           | Hepatocellular<br>Carcinoma                 | 160         | 0           | 0             | 0     | 53.53±10.87       | 128/32                  | 34                         |
| LUAD           | Lung Adenocarcinoma                         | 109         | 111         | 111           | 109   | $62.65 \pm 9.68$  | 73/36                   | 18.35                      |
| LUSC           | Lung Squamous Cell<br>Carcinoma             | 108         | 108         | 107           | 107   | $65.84 \pm 8.25$  | 85/22                   | 18.69                      |
| OV             | Ovarian Serous<br>Cystadenocarcinoma        | 100         | 101         | 101           | 97    | 59.63±10.11       | 0/97                    | 7.22                       |
| PBT            | Pediatric/AYA Brain<br>Tumors               | 66          | 0           | 0             | 0     | $7.62 \pm 5.19$   | 43/23                   | 23                         |
| PDAC           | Pancreatic Ductal<br>Adenocarcinoma         | 137         | 140         | 140           | 137   | 64.14±11.15       | 71/66                   | 63.5                       |
| UCEC           | Uterine Corpus<br>Endometrial Carcinoma     | 100         | 100         | 99            | 99    | 63.34±9.78        | 0/99                    | 6.06                       |
| Total          |                                             | 1320        | 1099        | 1075          | 1013  |                   |                         |                            |

Table S1. Study characteristics of the pan-cancer datasets

| Cancer<br>type | Cancer full name                      | Protein-<br>tumor | Protein-<br>normal | Final |
|----------------|---------------------------------------|-------------------|--------------------|-------|
| BRCA           | Breast Invasive Carcinoma             | 116               | 18                 | 17    |
| COAD           | Colon Adenocarinoma                   | 95                | 100                | 94    |
| GBM            | Glioblastoma                          | 99                | 10                 | 0     |
| HNSC           | Head and Neck Squamous Cell Carcinoma | 70                | 73                 | 32    |
| KIRC           | Clear Cell Renal Cell Carcinoma       | 160               | 84                 | 84    |
| LIHC           | Hepatocellular Carcinoma              | 160               | 160                | 160   |
| LUAD           | Lung Adenocarcinoma                   | 109               | 102                | 100   |
| LUSC           | Lung Squamous Cell Carcinoma          | 108               | 100                | 100   |
| OV             | Ovarian Serous Cystadenocarcinoma     | 100               | 25                 | 16    |
| PBT            | Pediatric/AYA Brain Tumors            | 66                | 77                 | 9     |
| PDAC           | Pancreatic Ductal Adenocarcinoma      | 137               | 66                 | 66    |
| UCEC           | Uterine Corpus Endometrial Carcinoma  | 100               | 30                 | 30    |
| Total          |                                       | 1320              | 845                | 708   |

Table S2. Sample size of tumor-normal pairs in each cancer type

| Official symbol | Description                                          | Category |
|-----------------|------------------------------------------------------|----------|
| METTL3          | Methyltransferase like 3                             | Writer   |
| METTL14         | Methyltransferase like 14                            | Writer   |
| METTL16         | Methyltransferase like 16                            | Writer   |
| METTL5          | Methyltransferase like 5                             | Writer   |
| WTAP            | WT1 associated protein                               | Writer   |
| VIRMA           | Vir like m6A methyltransferase associated            | Writer   |
| RBM15           | RNA binding motif protein 15                         | Writer   |
| RBM15B          | RNA binding motif protein 15B                        | Writer   |
| ZC3H13          | Zinc finger CCCH-type containing 13                  | Writer   |
| CBLL1           | Cbl proto-oncogene like 1                            | Writer   |
| FTO             | FTO alpha-ketoglutarate dependent dioxygenase        | Eraser   |
| ALKBH3          | AlkB homolog 3, RNA demethylase                      | Eraser   |
| ALKBH5          | AlkB homolog 5, RNA demethylase                      | Eraser   |
| YTHDF1          | YTH N6-methyladenosine RNA binding protein 1         | Reader   |
| YTHDF2          | YTH N6-methyladenosine RNA binding protein 2         | Reader   |
| YTHDF3          | YTH N6-methyladenosine RNA binding protein 3         | Reader   |
| YTHDC1          | YTH domain containing 1                              | Reader   |
| YTHDC2          | YTH domain containing 2                              | Reader   |
| HNRNPA2B1       | Heterogeneous nuclear ribonucleoprotein A2/B1        | Reader   |
| HNRNPC          | Heterogeneous nuclear ribonucleoprotein C            | Reader   |
| FMR1            | FMRP translational regulator 1                       | Reader   |
| EIF3A           | Eukaryotic translation initiation factor 3 subunit A | Reader   |
| IGF2BP1         | Insulin like growth factor 2 mRNA binding protein 1  | Reader   |
| IGF2BP2         | Insulin like growth factor 2 mRNA binding protein 2  | Reader   |
| IGF2BP3         | Insulin like growth factor 2 mRNA binding protein 3  | Reader   |
| ELAVL1          | ELAV like RNA binding protein 1                      | Reader   |
| G3BP1           | G3BP stress granule assembly factor 1                | Reader   |
| G3BP2           | G3BP stress granule assembly factor 2                | Reader   |
| PRRC2A          | Proline rich coiled-coil 2A                          | Reader   |
| RBMX            | RNA binding motif protein X-linked                   | Reader   |

Table S3. The descriptions of 30 m6A proteins enrolled in this study

| Protein   | BRCA  | COAD | HNSC | KIRC | LIHC | LUAD | LUSC | OV   | PBT  | PDAC | UCEC |
|-----------|-------|------|------|------|------|------|------|------|------|------|------|
| ALKBH3    | 1.13  | 0.94 | 0.99 | 0.95 | 0.85 | 0.95 | 1.32 | 0.63 | 0.81 | 0.66 | 0.55 |
| ALKBH5    | 1.97  | 1.35 | 1.67 | 1.65 | 1.12 | 1.13 | 1.28 | 0.97 | 1.26 | 0.96 | 0.82 |
| CBLL1     | 1.10  | 1.35 | 1.36 | 1.46 | 1.31 | 1.25 | 1.17 | 1.11 | 1.41 | 0.71 | 0.91 |
| EIF3A     | 1.57  | 1.29 | 1.45 | 1.39 | 1.13 | 1.16 | 1.08 | 1.09 | 0.86 | 0.72 | 0.79 |
| ELAVL1    | 1.51  | 1.15 | 1.44 | 1.30 | 1.24 | 1.40 | 1.15 | 1.00 | 1.37 | 0.97 | 0.86 |
| FMR1      | 1.98  | 1.19 | 1.43 | 1.26 | 1.47 | 1.39 | 0.84 | 1.08 | 1.14 | 1.21 | 1.28 |
| FTO       | 0.98  | 1.10 | 0.97 | 1.13 | 1.00 | 0.93 | 1.38 | 0.64 | 0.70 | 0.87 | 0.79 |
| G3BP1     | 1.39  | 1.46 | 1.67 | 1.58 | 1.42 | 1.66 | 1.27 | 1.55 | 1.55 | 0.96 | 1.11 |
| G3BP2     | 2.24  | 1.49 | 1.51 | 1.50 | 1.15 | 1.13 | 0.97 | 1.28 | 1.90 | 1.03 | 1.11 |
| HNRNPA2B1 | 1.20  | 1.20 | 1.10 | 1.16 | 1.27 | 1.46 | 1.02 | 1.10 | 1.81 | 0.99 | 0.92 |
| HNRNPC    | 1.72  | 1.44 | 1.56 | 1.52 | 1.39 | 1.55 | 1.05 | 1.23 | 2.66 | 0.98 | 0.98 |
| IGF2BP1   | 1.37  | 1.88 | 4.95 | 5.95 | 5.32 | 2.43 | 1.34 | 1.94 | 0.54 | 1.92 | 2.08 |
| IGF2BP2   | 0.92  | 1.02 | 4.28 | 3.14 | 4.46 | 1.82 | 0.82 | 0.61 | 1.64 | 2.26 | 1.96 |
| IGF2BP3   | 10.82 | 2.55 | 8.95 | 6.52 | 5.82 | 2.56 | 3.48 | 1.89 | 0.65 | 3.11 | 4.14 |
| METTL14   | 1.62  | 1.24 | 1.00 | 1.11 | 1.33 | 0.90 | 1.09 | 0.91 | 0.83 | 0.93 | 0.85 |
| METTL16   | 1.33  | 1.00 | 1.06 | 1.06 | 1.09 | 1.02 | 1.27 | 0.53 | 0.93 | 1.00 | 0.64 |
| METTL3    | 1.14  | 1.11 | 1.09 | 1.12 | 1.42 | 0.99 | 1.13 | 0.91 | 1.17 | 0.98 | 0.87 |
| METTL5    | 0.68  | 0.94 | 1.43 | 1.22 | 1.37 | 1.15 | 1.64 | 1.29 | 0.60 | 1.08 | 1.34 |
| PRRC2A    | 1.97  | 1.38 | 1.62 | 1.67 | 1.49 | 1.35 | 1.07 | 1.13 | 1.97 | 0.92 | 0.98 |
| RBM15     | 2.41  | 1.30 | 1.38 | 1.41 | 1.29 | 1.30 | 1.21 | 1.20 | 1.49 | 1.14 | 1.09 |
| RBM15B    | 1.66  | 1.15 | 1.38 | 1.21 | 1.31 | 1.15 | 0.99 | 0.97 | 1.42 | 0.91 | 1.01 |
| RBMX      | 1.24  | 1.42 | 1.36 | 1.38 | 1.59 | 1.58 | 1.18 | 1.20 | 2.21 | 1.20 | 1.13 |
| VIRMA     | 1.47  | 1.12 | 1.49 | 1.40 | 1.26 | 1.28 | 1.17 | 1.23 | 0.64 | 1.09 | 0.98 |
| WTAP      | 2.15  | 1.28 | 1.64 | 1.58 | 1.44 | 1.29 | 1.24 | 1.11 | 1.03 | 1.05 | 1.04 |
| YTHDC1    | 2.07  | 1.39 | 1.67 | 1.63 | 1.37 | 1.52 | 1.11 | 0.98 | 1.32 | 1.18 | 1.08 |
| YTHDC2    | 0.91  | 1.12 | 1.32 | 1.16 | 1.08 | 1.17 | 1.37 | 1.53 | 0.62 | 0.98 | 1.19 |
| YTHDF1    | 2.39  | 1.63 | 1.66 | 1.77 | 1.56 | 1.63 | 1.09 | 1.26 | 1.16 | 0.94 | 1.15 |
| YTHDF2    | 3.50  | 1.63 | 1.90 | 1.84 | 1.69 | 1.55 | 1.14 | 1.65 | 1.32 | 1.05 | 1.28 |
| YTHDF3    | 2.43  | 1.59 | 1.65 | 1.63 | 1.63 | 1.42 | 1.11 | 1.11 | 1.23 | 0.92 | 1.08 |
| ZC3H13    | 2.07  | 1.30 | 1.44 | 1.52 | 1.32 | 1.13 | 1.18 | 1.08 | 1.45 | 1.00 | 0.98 |

 Table S4. The fold change of 30 m6A proteins in each cancer type

| m6A proteins | HR   | CI   | CU   | Р      | Category |
|--------------|------|------|------|--------|----------|
| METTL3       | 0.75 | 0.48 | 1.19 | 0.2240 | Writer   |
| METTL14      | 0.92 | 0.64 | 1.33 | 0.6577 | Writer   |
| METTL16      | 0.90 | 0.63 | 1.28 | 0.5432 | Writer   |
| METTL5       | 1.07 | 0.75 | 1.54 | 0.7031 | Writer   |
| RBM15        | 1.26 | 0.81 | 1.97 | 0.3033 | Writer   |
| RBM15B       | 1.28 | 0.83 | 1.99 | 0.2613 | Writer   |
| WTAP         | 1.25 | 0.85 | 1.85 | 0.2578 | Writer   |
| VIRMA        | 1.23 | 0.78 | 1.96 | 0.3773 | Writer   |
| ZC3H13       | 1.14 | 0.75 | 1.74 | 0.5377 | Writer   |
| CBLL1        | 1.01 | 0.64 | 1.61 | 0.9635 | Writer   |
| ALKBH5       | 1.51 | 1.07 | 2.14 | 0.0196 | Eraser   |
| ALKBH3       | 0.92 | 0.70 | 1.21 | 0.5459 | Eraser   |
| FTO          | 1.04 | 0.73 | 1.48 | 0.8226 | Eraser   |
| YTHDC1       | 1.06 | 0.71 | 1.57 | 0.7892 | Reader   |
| YTHDC2       | 0.81 | 0.54 | 1.22 | 0.3190 | Reader   |
| YTHDF1       | 2.34 | 1.46 | 3.75 | 0.0004 | Reader   |
| YTHDF2       | 1.89 | 1.29 | 2.77 | 0.0012 | Reader   |
| YTHDF3       | 1.66 | 1.13 | 2.44 | 0.0091 | Reader   |
| IGF2BP1      | 1.09 | 0.98 | 1.21 | 0.0963 | Reader   |
| IGF2BP2      | 1.22 | 1.08 | 1.38 | 0.0013 | Reader   |
| IGF2BP3      | 1.14 | 1.03 | 1.26 | 0.0081 | Reader   |
| HNRNPA2B1    | 1.14 | 0.66 | 1.96 | 0.6435 | Reader   |
| HNRNPC       | 1.51 | 0.97 | 2.36 | 0.0697 | Reader   |
| RBMX         | 1.28 | 0.86 | 1.89 | 0.2264 | Reader   |
| EIF3A        | 1.72 | 0.90 | 3.26 | 0.0982 | Reader   |
| FMR1         | 1.30 | 0.84 | 2.00 | 0.2361 | Reader   |
| ELAVL1       | 1.33 | 0.86 | 2.05 | 0.1950 | Reader   |
| G3BP1        | 1.82 | 1.13 | 2.94 | 0.0145 | Reader   |
| G3BP2        | 2.01 | 1.28 | 3.14 | 0.0022 | Reader   |
| PRRC2A       | 1.69 | 1.07 | 2.66 | 0.0232 | Reader   |

Table S5. Association of 30 m6A proteins and overall survival in pan-cancer

| Cancer type | Cutoff | HR   | CI   | CU   | Р        |
|-------------|--------|------|------|------|----------|
| COAD        | 0.73   | 3.15 | 1.55 | 6.39 | 0.001497 |
| GBM         | -0.29  | 1.41 | 1.11 | 1.79 | 0.004411 |
| HNSC        | 0.63   | 2.23 | 1.43 | 3.50 | 0.000431 |
| KIRC        | 0.95   | 2.56 | 1.71 | 3.83 | 4.95E-06 |
| LUAD        | 0.69   | 2.21 | 1.41 | 3.48 | 0.000603 |
| LUSC        | 0.27   | 2.39 | 1.39 | 4.11 | 0.00169  |
| OV          | 0.49   | 2.37 | 0.89 | 6.32 | 0.085013 |
| PDAC        | 0.04   | 1.98 | 1.58 | 2.47 | 2.63E-09 |
| UCEC        | 0.85   | 2.91 | 1.32 | 6.41 | 0.008017 |

 Table S6. The Univariate Cox regression of m6Ascore in each cancer

| Immune check<br>point | Beta  | CI    | CU   | Р        |
|-----------------------|-------|-------|------|----------|
| PD-1                  | 0.08  | 0.03  | 0.13 | 0.003244 |
| PD-L1                 | 0.15  | 0.10  | 0.20 | 4.92E-08 |
| CTLA-4                | 0.01  | -0.06 | 0.07 | 0.855967 |
| PD-L2                 | 0.13  | 0.04  | 0.21 | 0.0034   |
| HAVCR2                | 0.09  | 0.02  | 0.17 | 0.014211 |
| LAG3                  | 0.04  | -0.04 | 0.12 | 0.308203 |
| VSIR                  | -0.02 | -0.08 | 0.05 | 0.621812 |
| <i>B7-H3</i>          | -0.06 | -0.12 | 0.01 | 0.0889   |
| BTLA                  | 0.05  | -0.01 | 0.12 | 0.112205 |
| TIGIT                 | 0.12  | 0.05  | 0.19 | 0.000742 |

Table S7. The association between m6Ascore and immune checkpoint

| Immune pathways                | Beta  | CI     | CU    | Р        |
|--------------------------------|-------|--------|-------|----------|
| Activated B cell               | 0.006 | -0.007 | 0.018 | 0.391824 |
| Activated CD4 T cell           | 0.016 | 0.008  | 0.023 | 5.88E-05 |
| Activated CD8 T cell           | 0.007 | -0.001 | 0.015 | 0.092717 |
| Activated dendritic cell       | 0.013 | 0.008  | 0.017 | 2.19E-08 |
| CD56bright natural killer cell | 0.004 | 0.001  | 0.006 | 0.004011 |
| CD56dim natural killer cell    | 0.004 | 0.001  | 0.008 | 0.011631 |
| Central memory CD4 T cell      | 0.011 | 0.008  | 0.013 | 1.09E-14 |
| Central memory CD8 T cell      | 0.019 | 0.014  | 0.023 | 2.2E-16  |
| Effector memory CD4 T cell     | 0.005 | 0.001  | 0.009 | 0.01253  |
| Effector memory CD8 T cell     | 0.013 | 0.007  | 0.018 | 8.9E-06  |
| Eosinophil                     | 0.009 | 0.003  | 0.015 | 0.001992 |
| Gamma delta T cell             | 0.013 | 0.010  | 0.017 | 6.16E-12 |
| Immature B cell                | 0.010 | 0.000  | 0.020 | 0.051587 |
| Immature dendritic cell        | 0.010 | 0.007  | 0.014 | 7.94E-11 |
| Macrophage                     | 0.022 | 0.015  | 0.028 | 3.63E-11 |
| Mast cell                      | 0.011 | 0.003  | 0.018 | 0.003942 |
| MDSC                           | 0.021 | 0.014  | 0.028 | 2.68E-08 |
| Memory B cell                  | 0.011 | 0.007  | 0.015 | 2.87E-08 |
| Monocyte                       | 0.005 | 0.002  | 0.009 | 0.003283 |
| Natural killer cell            | 0.010 | 0.007  | 0.014 | 2.2E-08  |
| Natural killer T cell          | 0.013 | 0.009  | 0.018 | 1.64E-09 |
| Neutrophil                     | 0.014 | 0.003  | 0.025 | 0.011214 |
| Plasmacytoid dendritic cell    | 0.009 | 0.006  | 0.012 | 1.13E-10 |
| Regulatory T cell              | 0.027 | 0.019  | 0.034 | 1.5E-12  |
| T follicular helper cell       | 0.012 | 0.008  | 0.017 | 1.05E-07 |
| Type 1 T helper cell           | 0.012 | 0.008  | 0.017 | 3.18E-07 |
| Type 17 T helper cell          | 0.006 | 0.002  | 0.010 | 0.004461 |
| Type 2 T helper cell           | 0.016 | 0.012  | 0.020 | 1.1E-14  |

# Table S8. The association between m6Ascore and 28 immune pathways

**Potential** OV BRCA COAD **HNSC** KIRC LIHC LUAD LUSC PBT PDAC UCEC protein CHORDC1 1.19 1.10 0.77 1.91 1.73 1.29 2.33 2.01 2.16 1.02 1.21 0.91 FAM114A1 0.62 0.69 1.94 1.22 1.56 1.15 1.47 1.05 0.98 0.53 2.41 1.96 3.18 0.62 1.22 1.86 2.61 1.06 1.59 2.66 1.41 BMP1 CALU 0.87 1.19 2.46 1.00 1.81 2.09 1.81 2.43 1.39 1.26 1.11 COLGALT1 3.92 1.42 1.17 0.91 1.00 1.61 1.50 1.63 0.72 1.47 1.99 1.66 1.15 0.87 1.01 1.53 1.18 1.42 2.04 0.70 0.98 0.85 ENY2 FKBP10 2.07 2.44 4.85 0.83 2.52 2.38 2.58 1.31 1.35 1.44 1.81 IFI35 1.58 1.14 2.75 0.79 1.19 1.36 1.45 1.78 0.82 1.41 1.25 3.79 1.83 MMP14 1.21 1.67 0.67 1.83 1.66 2.46 0.87 2.17 2.51 NFKB2 1.56 1.16 2.03 0.86 1.75 1.34 1.41 1.14 1.01 0.78 1.38 1.44 0.92 1.42 1.23 1.41 1.05 0.97 0.92 NUP98 1.23 1.20 1.28 P3H1 2.01 2.45 2.56 0.79 1.66 1.98 2.40 1.05 0.84 1.88 1.40 1.98 2.59 1.27 P3H4 3.12 2.06 0.73 1.92 3.12 0.68 1.04 2.21 2.10 1.99 3.23 0.66 1.67 1.72 2.24 1.19 1.24 2.17 1.67 PLOD1 2.18 RCN1 0.59 2.55 1.11 0.91 1.62 1.44 2.03 1.28 1.51 1.64 3.44 1.09 1.55 0.92 2.40 2.15 2.56 1.88 1.00 1.75 SPATS2 1.02 TIGAR 2.05 1.23 1.65 0.83 1.33 1.14 1.31 1.33 0.94 1.70 1.55 1.64 1.30 1.34 1.01 1.42 1.33 1.23 1.01 1.16 0.81 1.14 ANKHD1 ATF2 1.20 1.19 1.70 1.02 1.37 1.33 1.17 2.37 1.05 1.00 0.65 BOP1 2.32 2.11 1.59 0.83 1.82 1.45 1.99 1.45 0.81 0.97 1.17 BRIX1 2.35 1.95 2.79 0.83 1.73 1.72 2.08 0.95 0.43 1.47 1.55 1.09 0.95 1.07 1.16 0.74 1.08 Clorf174 2.72 1.17 1.38 1.27 2.06 CRTAP 1.35 2.03 2.20 0.77 2.12 2.02 2.22 0.72 1.39 1.98 1.17 CWC27 1.12 1.08 1.22 1.43 1.15 1.27 1.74 0.98 0.89 1.02 0.89 4.03 4.47 3.74 ERO1A 2.00 1.06 1.36 3.81 1.36 1.28 1.74 2.91 1.18 1.55 ETV6 1.16 1.64 1.18 1.06 1.77 1.32 1.32 1.59 1.76 **IKBIP** 1.73 2.05 5.68 0.69 2.15 1.81 1.81 1.29 1.36 1.96 1.35 JUNB 2.63 1.88 1.72 0.82 1.32 1.23 1.66 1.44 1.50 2.21 0.72 LOXL2 2.38 1.64 11.41 0.43 2.93 2.60 4.19 2.03 5.35 5.45 1.62 2.19 MICALL2 1.78 1.14 1.30 0.91 0.64 1.61 1.19 1.10 1.40 1.32 NMI 2.29 1.11 2.91 0.75 1.27 1.54 1.49 2.02 0.67 1.94 1.35 2.57 1.77 2.33 P4HA1 2.81 5.80 0.69 3.02 3.03 1.92 2.83 2.06 P4HA2 2.45 1.71 6.05 0.56 2.59 2.37 2.69 1.69 0.99 2.32 1.87 PKM 1.16 1.28 3.48 0.98 1.66 1.35 1.45 1.65 1.07 1.86 1.26 PLIN3 1.11 1.17 2.45 0.95 0.94 1.46 1.17 1.59 0.87 1.38 0.99 1.26 POLR2C 1.20 1.26 1.16 0.96 1.12 1.10 1.55 0.92 0.89 0.86 PPP1R18 2.75 1.10 2.41 0.84 1.15 1.14 1.07 1.56 1.00 1.82 0.73 1.55 2.03 1.09 0.88 1.47 1.40 1.56 1.44 1.03 0.93 1.08 RANBP2 RCOR1 1.93 1.32 1.19 1.00 1.41 1.44 1.69 2.05 1.09 1.04 1.31 1.17 1.30 1.02 1.81 1.40 1.00 0.97 0.98 0.99 RPRD2 1.00 1.41 0.81 1.26 1.16 1.23 1.71 RUNX1 2.16 0.88 0.85 1.36 1.24 1.82 2.37 1.85 2.05 1.49 1.81 1.27 SERPINH1 1.21 2.60 0.83 2.07 1.81 **SNRPG** 2.45 1.57 1.11 1.01 1.42 1.19 1.18 2.44 0.94 1.41 1.16 SUDS3 1.01 1.09 1.19 1.02 1.20 1.15 1.33 1.47 1.03 0.73 0.73 1.92 1.28 1.59 1.49 0.97 1.01 TCEA1 1.15 0.88 1.48 1.95 0.93 1.46 1.54 1.49 1.42 1.74 1.05 1.08 0.98 TCERG1 1.47 1.24 0.96 TRADD 0.80 0.73 2.67 1.07 0.84 1.19 1.01 1.33 2.61 1.33 0.90 2.79 1.35 1.85 1.31 **U2SURP** 1.62 1.03 0.91 1.65 1.41 0.86 1.07 2.03 WDR12 2.21 1.36 0.80 2.58 2.08 3.38 1.50 0.98 0.97 1.49 0.98 0.95 ZFR 1.69 1.35 1.03 0.89 1.38 1.41 1.71 1.02 1.01 2.41 0.84 1.60 1.40 0.96 1.65 ZMYND8 1.45 1.16 1.56 1.85 1.18

Table S9. The fold change of 51 potential proteins in each cancer type

| Potential      | BRCA | COAD | GBM   | HNSC | KIRC | LUAD | LUSC | OV   | PDAC | UCEC |
|----------------|------|------|-------|------|------|------|------|------|------|------|
| regulators     | 0.57 | 2.02 | 4.0.4 | 0.02 | 0.00 | 0.75 | 0.02 | 2.00 | 0.70 | 2.00 |
| RUNAI          | 3.57 | 3.03 | 4.04  | 0.93 | 0.00 | 2.75 | 0.93 | 2.08 | 0.72 | 3.00 |
| RPRD2          | 0.89 | 3.03 | 1.01  | 1.85 | 4.59 | 3.67 | 0.93 | 2.08 | 0.00 | 6.00 |
| RANBP2         | 0.00 | 6.06 | 1.01  | 1.85 | 2.75 | 1.83 | 4.63 | 2.08 | 0.72 | 7.00 |
| NUP98          | 0.00 | 6.06 | 1.01  | 0.93 | 0.92 | 0.92 | 5.56 | 1.04 | 0.72 | 5.00 |
| ZFR            | 0.00 | 4.04 | 1.01  | 1.85 | 1.83 | 1.83 | 2.78 | 1.04 | 0.72 | 3.00 |
| ZMYND8         | 0.89 | 4.04 | 0.00  | 1.85 | 1.83 | 1.83 | 0.93 | 1.04 | 0.00 | 5.00 |
| ETV6           | 0.89 | 4.04 | 0.00  | 0.93 | 0.00 | 0.92 | 0.93 | 0.00 | 0.72 | 2.00 |
| MICALL2        | 0.89 | 1.01 | 0.00  | 2.78 | 0.00 | 0.92 | 0.00 | 1.04 | 0.72 | 3.00 |
| P4HA2          | 0.00 | 2.02 | 1.01  | 0.93 | 0.92 | 0.00 | 2.78 | 2.08 | 0.00 | 3.00 |
| PLOD1          | 0.89 | 2.02 | 0.00  | 0.00 | 0.92 | 0.00 | 2.78 | 1.04 | 0.00 | 3.00 |
| TCERG1         | 0.00 | 9.09 | 0.00  | 0.00 | 0.00 | 1.83 | 0.93 | 2.08 | 0.72 | 7.00 |
| P3H1           | 0.00 | 3.03 | 0.00  | 0.93 | 0.92 | 0.92 | 0.00 | 1.04 | 0.00 | 3.00 |
| SPATS2         | 0.00 | 2.02 | 0.00  | 0.93 | 1.83 | 0.92 | 0.00 | 1.04 | 0.00 | 2.00 |
| BOP1           | 0.00 | 2.02 | 0.00  | 1.85 | 0.92 | 0.00 | 1.85 | 1.04 | 0.00 | 2.00 |
| COLGALT1       | 0.89 | 2.02 | 1.01  | 0.00 | 0.00 | 0.00 | 0.93 | 0.00 | 0.00 | 3.00 |
| SUDS3          | 0.89 | 0.00 | 0.00  | 0.93 | 0.92 | 0.00 | 0.00 | 1.04 | 0.00 | 2.00 |
| JUNB           | 0.00 | 1.01 | 0.00  | 1.85 | 0.00 | 0.00 | 2.78 | 0.00 | 0.72 | 1.00 |
| PPP1R18        | 0.00 | 3.03 | 1.01  | 0.93 | 0.00 | 0.92 | 0.00 | 0.00 | 0.00 | 3.00 |
| PLIN3          | 0.00 | 1.01 | 1.01  | 0.00 | 0.00 | 0.92 | 0.00 | 1.04 | 0.00 | 1.00 |
| U2SURP         | 0.00 | 5.05 | 0.00  | 2.78 | 0.00 | 3.67 | 1.85 | 0.00 | 0.00 | 4.00 |
| P4HA1          | 0.00 | 3.03 | 0.00  | 0.00 | 0.00 | 0.92 | 1.85 | 1.04 | 0.00 | 1.00 |
| BMP1           | 0.00 | 4.04 | 0.00  | 0.93 | 0.00 | 0.92 | 0.93 | 0.00 | 0.00 | 5.00 |
| CALU           | 1.79 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.93 | 1.04 | 0.00 | 1.00 |
| RCN1           | 0.89 | 0.00 | 0.00  | 0.00 | 0.92 | 0.92 | 0.00 | 0.00 | 0.00 | 2.00 |
| NFKB2          | 0.89 | 4.04 | 0.00  | 0.00 | 0.00 | 1.83 | 0.00 | 0.00 | 0.00 | 2.00 |
| FKBP10         | 0.00 | 1.01 | 0.00  | 1.85 | 0.92 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
| MMP14          | 0.00 | 3.03 | 1.01  | 0.00 | 0.00 | 0.92 | 0.00 | 1.04 | 0.00 | 0.00 |
| SERPINH1       | 0.00 | 2.02 | 0.00  | 0.00 | 0.00 | 0.92 | 0.93 | 0.00 | 0.00 | 4.00 |
| LOXL2          | 0.00 | 3.03 | 0.00  | 0.00 | 0.00 | 0.92 | 0.00 | 1.04 | 0.00 | 5.00 |
| TRADD          | 0.00 | 2.02 | 0.00  | 0.00 | 0.00 | 1.83 | 1.85 | 1.04 | 0.00 | 0.00 |
| RCOR1          | 0.00 | 3.03 | 0.00  | 0.00 | 0.00 | 2.75 | 1.85 | 1.04 | 0.00 | 0.00 |
| BRIX1          | 0.00 | 1.01 | 0.00  | 0.93 | 0.00 | 0.92 | 0.00 | 1.04 | 0.00 | 0.00 |
| ATF2           | 0.00 | 1.01 | 0.00  | 0.00 | 0.00 | 0.00 | 1.85 | 1.04 | 0.00 | 5.00 |
| FAM114A1       | 0.00 | 1.01 | 0.00  | 0.93 | 0.00 | 0.00 | 0.00 | 1.04 | 0.00 | 3.00 |
| TCFA1          | 0.00 | 1.01 | 0.00  | 0.00 | 0.00 | 0.00 | 2.78 | 0.00 | 0.00 | 4 00 |
| IKBIP          | 0.00 | 0.00 | 1.01  | 0.00 | 0.00 | 0.00 | 0.00 | 1.04 | 0.00 | 1.00 |
| CWC27          | 0.00 | 4 04 | 0.00  | 0.00 | 0.00 | 0.92 | 0.00 | 0.00 | 0.00 | 0.00 |
| C1  or  f174   | 0.00 | 2.02 | 0.00  | 0.00 | 0.00 | 1.83 | 0.00 | 0.00 | 0.00 | 2.00 |
| WDR12          | 0.00 | 1.02 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
| CPTAP          | 0.00 | 0.00 | 0.00  | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
|                | 0.00 | 1.01 | 0.00  | 0.95 | 0.00 | 0.00 | 0.93 | 0.00 | 0.00 | 0.00 |
| I JII4<br>NIMI | 0.00 | 2.02 | 0.00  | 0.95 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
|                | 0.00 | 2.02 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
|                | 0.00 | 2.02 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.72 | 1.00 |
|                | 0.00 | 2.02 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
| POLK2C         | 0.00 | 0.00 | 0.00  | 0.00 | 0.92 | 0.00 | 0.00 | 0.00 | 0.00 | 2.00 |
| ENY2           | 0.89 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| IFI35          | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
| ANKHDI         | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
| TIGAR          | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| EROIA          | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SNRPG          | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

Table S10. The mutation frequency (%) of potential regulators across 10 cancer types

| Pathways               | Ctype | High<br>CHORDC1<br>group | Low<br>CHORDC1<br>group | Р        |
|------------------------|-------|--------------------------|-------------------------|----------|
| MTOR_SIGNALING_PATHWAY | COAD  | 4.31                     | 4.07                    | 1.15E-42 |
| PI3K_AKT_Pathway       | COAD  | 3.59                     | 3.37                    | 1.16E-19 |
| MTOR_SIGNALING_PATHWAY | HNSC  | 3.71                     | 3.54                    | 2.85E-10 |
| PI3K_AKT_Pathway       | HNSC  | 2.96                     | 2.85                    | 4.94E-05 |
| MTOR_SIGNALING_PATHWAY | KIRC  | 2.94                     | 2.71                    | 1.52E-13 |
| PI3K_AKT_Pathway       | KIRC  | 2.25                     | 2.1                     | 4.05E-10 |
| MTOR_SIGNALING_PATHWAY | LUSC  | 3.13                     | 2.93                    | 5.16E-26 |
| PI3K_AKT_Pathway       | LUSC  | 2.41                     | 2.35                    | 0.001784 |
| MTOR_SIGNALING_PATHWAY | OV    | 3.27                     | 3.13                    | 4.79E-17 |
| PI3K_AKT_Pathway       | OV    | 2.57                     | 2.49                    | 0.000379 |
| MTOR_SIGNALING_PATHWAY | UCEC  | 2.89                     | 2.66                    | 1.93E-38 |
| PI3K_AKT_Pathway       | UCEC  | 2.16                     | 2                       | 1.76E-14 |
| PI3K_AKT_Pathway       | HNSC  | 2.96                     | 2.85                    | 4.94E-05 |

Table S11. Comparison of ssGSEA enrichment score of the PI3K-AKT and mTOR pathways in highand low-CHORDC1 group. Figure S1. Nine significant m6A prognostic proteins were correlation with PGR, ERS1 and ERBB3 in Breast cancer





#### Figure S2. Nine significant m6A prognostic proteins differed in abundance between LUAD and LUSC.



Figure S3. Kaplan-Meier survival analysis of *m6Ascore* in CPTAC project



# Figure S4. The OncoScore system to evaluate 51 potential proteins



## Figure S5. Somatic mutation frequency analysis of 51 potential regulators



### Figure S6. Kaplan-Meier survival analysis of CHORDC1 protein in CPTAC project

Figure S7. Meta-analysis of the associations of CHORDC1 protein expression and overall survival in CPTAC project







Figure S9. The 17 known biological pathways that are associated with the CHORDC1 protein expression

