Supplementary information: Effects of surfactant head group modification on vertically oriented mesoporous silica produced by the electrochemically assisted surfactant assembly method

Nabil A. N. Mohamed,^a Sarah Harcourt-Vernon,^b Yisong Han,^b Andrew L. Hector,^a* Anthony R. Houghton,^c Gillian Reid,^a Daryl R. Williams^c and Wenjian Zhang^a

- ^a School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
- ^b Department of Physics, University of Warwick, Coventry CV4 7AL, UK
- ^c Department of Chemical Engineering, Imperial College London SW7 2AZ, UK

Figure S1. Positive ion electrospray mass spectrum of C₁₈DMEAB in methanol at 25 °C.

Figure S2. Positive ion electrospray mass spectrum of C_{18} DEMAB in methanol at 25 °C.

Figure S3. Positive ion electrospray mass spectrum of C₁₈TEAB in methanol at 25 °C.

Figure S4. ¹H NMR spectrum of C_{18} DMEAB in CDCl₃ at 25 °C.

Figure S5. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of C_{18}DMEAB in CDCl_3 (77.16 ppm) at 25 °C.

Figure S6. ^1H NMR spectrum of C18DEMAB in D-methanol at 25 °C.

Figure S7. ${}^{13}C{}^{1}H$ NMR spectrum of C₁₈DEMAB in D-methanol at 25 °C.

Figure S8. ^1H NMR spectrum of C18TEAB in CDCl3 at 25 °C.

Figure S9. $^{13}\text{C}\{^1\text{H}\}$ NMR of C_{18}TEAB in CDCl_3 (77.16 ppm) at 25 °C.

Figure S10 1D in-plane GISAXS patterns of EASA films produced with C_{18} DEMAB (a) before (b) after surfactant removal. The film was deposited at a potential of -1.25 V (vs. Ag/Ag⁺) for 20 seconds on ITO electrodes.

Surfactants/Electrode	Redox Probe	I _{pa} (mV)	I _{pc} (mV)	ΔE_{p} (mV)
Bare ITO	[Fe(CN) ₆] ^{3-/4-}	2.02×10^{-2}	-2.03×10^{-2}	90
C ₁₈ TAB	[Fe(CN) ₆] ^{3-/4-}	1.35 × 10 ⁻²	-1.26×10^{-2}	148
C ₁₈ DMEAB	[Fe(CN) ₆] ^{3-/4-}	1.58 × 10 ⁻³	-3.01 × 10 ⁻³	104
C ₁₈ DEMAB	[Fe(CN) ₆] ^{3-/4-}	N/A	N/A	N/A
C ₁₈ TEAB	[Fe(CN) ₆] ^{3-/4-}	N/A	N/A	N/A

Table S1. The electrochemical data of a range of mesoporous silica films collected from CV's