Electronic Supplementary Information

Pd@L-Asparagine-EDTA-Chitosan: A highly effective and reusable biobased and biodegradable catalyst for Heck Cross-Coupling Reaction under mild conditions

Mohammad Dohendou ^a, Mohammad G. Dekamin^a*, Danial Namaki^a

^aPharmaceutical and Heterocyclic Compounds Research Laboratory Department of Chemistry Iran University of Science and Technology. Email: mdekamin@iust.ac.ir

Contents	Page

Title page	S1
Graphical Abstract	S3
Fig. S1 Model reaction and Catalyst Preparation	S4-S5
Fig. S2 Mixed FTIR spectrums of catalyst 1 from initial section.	S6
Fig. S3 EDS spectra of Pd@ASP-EDTA-CS organocatalyst (1).	S7
Fig. S4 FESEM images of Pd@ASP-EDTA-CS catalyst (1).	S8-S9
Fig. S5a DRS pattern of Pd@ASP-EDTA-CS catalyst (1).	S9
Fig. S5b DRS pattern of Pd@ASP-EDTA-CS catalyst (1) in second axis.	S10
Fig. S6 XRD pattern of Pd@ASP-EDTA-CS catalyst (1).	S11
Fig. S7 (a) TGA and (b) diff. TGA Curves of the catalyst (1).	S12
Fig. S8 The N2 adsorption-desorption isotherm of catalyst (1).	S13
Table 1. Optimization of the conditions for HCR in the model reaction of Iodobenzene (3a), methyl acrylate (4b) to afford 5b under different conditions in the presence of catalyst (1).	S13
Fig. S9 Investigation of the optimized amount of the catalyst 1 in different solvents for HCR.	S14
Table 2 investigation of the synthesis of desired derivatives of cinnamic acid (5 a–h) through HCR catalyzed by catalyst 1 under the optimized conditions.	S15-S17
Table 3 The comparison of the obtained results for HCR using catalyst 1 and other catalysts.	S17
Fig. S10 Reusability of the Catalyst 1 in the model reaction to afford 5b.	S18
Scheme 2 The proposed mechanism for the synthesis cinnamic acid derivatives using aryl halides and active alkenes in the presence of catalyst 1.	S18
Fig. S11 FTIR of cinnamic acid.	S19
Fig. S12 ¹ H NMR of cinnamic acid.	S19
Fig. S13 FTIR of Methyl Cinnamate.	S20
Fig. S14 FTIR of Ethyl Cinnamate.	S20
Fig. S15 FTIR of Butyl Cinnamate.	S21
Fig. S16 FTIR of EDTA Dianhydride.	S21
Fig. S17 FTIR of Chitosan.	S22
Fig. S18 Mixed FTIR spectrums of catalyst 1 from initial section.	S22

Graphical Abstract

Pd@L-Asparagine-EDTA-Chitosan: A highly effective and reusable bio-based and biodegradable catalyst for Heck Cross-Coupling Reaction under mild conditions

Mohammad Dohendou ^a, Mohammad G. Dekamin^{a*}, Danial Namaki^a

A novel supramolecular Pd(II) catalyst supported on chitosan grafted by L-asparagine, and EDTA linker named <u>Pd@ASP-EDTA-CS</u> was prepared and characterized by applicable spectroscopic and analytical techniques. The heterogeneous low-loaded Pd catalyst was successfully employed in the Heck cross-coupling reaction (HCR) in good to excellent yields with proper reusability.

Model Reaction:

Catalyst Preparation:

The graphical procedure for the synthesis of the catalyst is shown in Scheme S1.

Scheme 1 Schematic representation of (Pd@ASP-EDTA-CS) catalyst (1) preparation steps.

FTIR Spectra:

The FTIR spectra of the catalyst 1 components are illustrated in (Fig. S2).

The observed bands at 3400-3600 are attributed to hydroxyl and amine groups, the vibration double bands of C=O groups in EDTA dianhydride stand in 1810 and 1760 respectively which are displaced by amidic and acidic groups during the processes at 1675 cm⁻¹ and 1733 cm⁻¹. The SP³ C–H bands are shown at 2900-3000 cm⁻¹ and peaks at 1200-1400 cm⁻¹ are assigned to the bending of –NH groups. The C-O stretching band is located at about 1100 cm⁻¹.

Fig. S9 Investigation of the optimized amount of catalyst 1 in different solvents for HCR.

Table S1. Optimization of the conditions for HCR in the model reaction of Iodobenzene (**3a**), methyl acrylate (**4b**) to afford **5b** under different conditions in the presence of catalyst (**1**).^a

Entry	Catalyst	Base	Solvent	Temp. (°C)	Time (h)	Yield ^b (%)
1	-	K ₂ CO ₃	DMF	r.t	48	N.R
2	-	K ₂ CO ₃	DMF	Reflux	48	N.R
3	Pd@ASP-ETDA-CS	-	DMF	Reflux	48	N.R
4	Pd@ASP-ETDA-CS	-	ACN	Reflux	48	N.R
5	Pd@ASP-ETDA-CS	-	Solvent-	80	24	trace
6	Pd@ASP-ETDA-CS	K ₂ CO ₃	DMF	90	14-20	78-90
7	Pd@ASP-ETDA-CS	K ₂ CO ₃	ACN	80	16-20	75-90
8	Pd@ASP-ETDA-CS	K ₂ CO ₃	Toluene	105	36	Trace
9	Pd@ASP-ETDA-CS	K ₂ CO ₃	H ₂ O	105	36	Trace
10	ASP-ETDA	K ₂ CO ₃	DMF	130	36	N.R
11	ASP-ETDA-CS	K ₂ CO ₃	DMF	130	36	N.R
12	ASP-ETDA	K ₂ CO ₃	ACN	80	36	N.R
13	ASP-ETDA-CS	K ₂ CO ₃	ACN	80	36	N.R
14	Asparagine	K ₂ CO ₃	DMF	130	36	N.R
15	EDTA	K ₂ CO ₃	DMF	130	36	N.R

 aReaction conditions: aryl halide (3 a-d, 2 mmol), alkene (4 a-f, 3 mmol), K_2CO_3 (2 mmol), [Pd@ASP-EDTA-CS (1) (4 mg) and solvent (3 ml). b Isolated yield.

 Table 2 Investigation of the synthesis of desired derivatives of cinnamic acid (5a-h) through HCR catalyzed by catalyst

 1 under the optimized conditions. ^a

6	3a	O OMe 4b	OMe 5b	17	80	90	33-35	34-38 ¹¹⁸
7	Br 3b	O OMe 4b	OMe 5b	19	80	80	33-35	34-38
8	CI 3c	O OMe 4b	OMe 5b	36	80	20	33-35	34-38
9	CI CI 3d	O OMe 4b	CI O OMe 5g	48	80	trace		34-38
10	Br O 3e	O OMe 4b	O O Me 5h	48	80	trace		34-38
11	Ja Ja	O OEt 4c	OEt 5c	14	80	85	liquid	(6.5-7.5) ¹¹⁹
12	Br 3b	O OEt 4c	OEt 5c	20	80	76	liquid	6.5-7.5
13	CI 3c	O OEt 4c	OEt 5c	36	80	20	liquid	6.5-7.5
14	CI CI 3d	O OEt 4c	CI O OMe 5g	48	80	Trace	-	-
15	Br O 3e	O OEt 4c	o 5h 512	it 48	80	Trace	-	-

16	3a	O OBu 4d	O OBu 5d	16	80	85	liquid ⁹⁹	B.P.: 271
17	Br 3b	O OBu 4d	O OBu 5d	20	80	80	liquid	B.P.: 271
18	CI 3c	O OBu 4d	O OBu 5d	36	80	20	liquid	B.P.: 271
19	CI CI 3d	O OBu 4d	CI O OBu 5g	48	80	Trace	-	-
20	Br	O OBu 4d	ОВи	48	80	Trace	-	-

^a Reaction conditions: aryl halide (**3a-d**, 2 mmol), alkene (**4a-d**, 3 mmol), K₂CO₃ (2 mmol), Pd@ASP-EDTA-CS (**1**, 4mg) and solvent (3 ml). ^b Isolated yield.

Entry	Catalyst	Reaction Conditions	Catalyst Amount	Time (h)	Yield (%)	Reference
1	Trifunctional N,N,O-terdentate amido/pyridyl carboxylate Pd(II) complexes	DMF / 145 °C / Base	0.01 mol %	20	3-92	116
2	Trifunctional N,N,O-terdentate amido/pyridyl carboxylate Pd(II) complexes	DMF / 145 °C / Na ₂ CO ₃	0.01 mol %	20	92	116
3	Pd(OAc) ₂	NMP / 135 °C / NaOAc	0.05 mol %		12	
4	CMH-Pd (0)	DMF / 120 °C / Et ₃ N	50 mg	6	90	124
5	NHC-Pd/IL@SiO ₂	NMP / 140 °C / NaOAc	0.01 mol %	24	94	117
6	Pd(quinoline-8-carboxylate) ₂	DMF / 130 °C / K ₂ CO ₃	0.01 mol %	30	39-94	118
7	OCMCS-Pd	DMF / 140 °C / Et ₃ N	0.02 mmol	12	89-98	125
8	Pd@ASP-EDTA-CS	DMF / 90 °C / K ₂ CO ₃	4 mg	16	90	This work
9	Pd@ASP-EDTA-CS	ACN / 80 °C / K ₂ CO ₃	4 mg	18	90	This work

Table S3 The comparison of the obtained results for HCR using catalyst 1 and other catalysts.

Fig. S10 Reusability of the Catalyst 1 in the model reaction to afford 5b.

Spectral data of the selected products

Cinnamic acid (5c):

White crystals, m.p. = 132-133 °C; FTIR (KBr, cm⁻¹) v = 3410, 2945, 1718, 1640, 1580, 1452; ¹H NMR (500MHz, DMSO–d6) δ (ppm) = 12.40 (S, 1H), 7.59 (d, J = 16.0 Hz, 1H), 7.71-7.63 (m, 2H), 7.44-7.32 (m, 3H), 6.52 (d, J = 16.0 Hz, 1H) ppm.

Fig. S13 FTIR spectrum of Methyl Cinnamate.

Fig. S14 FTIR spectrum of Ethyl Cinnamate.

Fig. S16 FTIR spectrum of EDTA Dianhydride.

