Comprehensive evaluation of photoelectrochemical performance dependence on geometric feature of ZnO nanorod electrodes

Ali Can Guler^a, Jan Antos^a, Milan Masar^a, Michal Urbanek^a, Michal Machovsky^a and Ivo Kuritka^{*,a,b}

^aCentre of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic

^bDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic

Email addresses: guler@utb.cz; antos@utb.cz; masar@utb.cz; murbanek@utb.cz; machovsky@utb.cz; *corresponding author: kuritka@utb.cz

Fig. S1 Color change of hydrothermal growth solution depending on amount of PEI surfactant.

Fig. S2 a) Hydrothermal growth solution containing 2 mL PEI and b) Corresponding SEM images of ZnO NRs prepared via hydrothermal solution containing 2 mL PEI.

Fig. S3 a) Open circuit potential measurements in the dark and light for the all samples. Cyclic voltammograms at various scan rates of b) ZnO-P0, c) ZnO-P0.5 and d) ZnO-P1.

Fig. S4 Dark current of ZnO NRs electrode in 0.5 M Na₂SO₄ and 0.5 M Na₂SO₄ together with 0.01 M MnSO₄.

Fig. S5 Top view SEM image of ZnO-P0.5 after photodeposition of Mn^{+2} .

Fig. S6 EDX spectrum of (a) ZnO-P0, (b) ZnO-P0.5 and (c) ZnO-P1 after photodeposition of Mn⁺².

Average	Synthesis method	Light source and	Electrolyte	Photocurrent
Diameter		intensity	solution	density
(nm)				(mA/cm^2)
45 ¹	Hydrothermal	UV LED (365 nm)	No data	0.35 at 0.3 V
	-	with 0.4 mW/cm^2		vs SCE
69 ²	Hydrothermal	halogen lamp with	0.1 M	0.48 at 0.5 V
		$100 \text{ mW}/\text{ cm}^2$	$Na_2S + 0.1$	vs Ag/AgCl
			M Na ₂ SO ₃	
120 ³	Hydrothermal	UV LED (365 nm)	0.1 M	2.25 at 1 V
		with 11.5 mW/ cm^2	NaOH	vs RHE
No data ⁴	RF sputtering	150 W tungsten –	0.5 M	0.40 at 1 V
		halogen lamp with	Na_2SO_4	vs Ag/AgCl
		125 mW/cm^2		_

Table S1. Comparative study for the PEC performances of ZnO NRs under various experimental conditions.

400 5	Electrodeposition	150 W Xenon lamp with 100 mW/cm ²	NaOH	0.39 at 0.5 V vs SCE
42 ⁶	MOCVD	300 W Xenon lamp with 100 mW/cm ²	0.5 M Na ₂ SO ₄	0.27 at 2 V vs RHE
70 7	Hydrothermal	Xenon lamp with 75 mW/cm ²	0.5 M Na ₂ SO ₄	0.4 at 1.4 V vs RHE
45 in this study	Hydrothermal	UV LED (365 nm) with 3 mW/cm ²	0.5 M Na ₂ SO ₄	0.06 at 0.5 V vs NHE

References

- E. S. Babu, S. K. Hong, T. S. Vo, J. R. Jeong and H. K. Cho, *Electron. Mater. Lett.*, 2015, 11, 65–72.
- H. J. Tan, Z. Zainal, Z. A. Talib, H. N. Lim, S. Shafie, S. T. Tan, K. B. Tan and N. N. Bahrudin, *Ceram. Int.*, 2021, 47, 14194–14207.
- 3 K. Govatsi, A. Seferlis, S. G. Neophytides and S. N. Yannopoulos, *Int. J. Hydrogen Energy*, 2018, **43**, 4866–4879.
- 4 K. S. Ahn, S. Shet, T. Deutsch, C. S. Jiang, Y. Yan, M. Al-Jassim and J. Turner, *J. Power Sources*, 2008, **176**, 387–392.
- 5 A. Rokade, S. Rondiya, V. Sharma, M. Prasad, H. Pathan and S. Jadkar, *J. Solid State Electrochem.*, 2017, **21**, 2639–2648.
- 6 M. A. Hassan, A. Waseem, M. A. Johar, I. V. Bagal, J. S. Ha and S. W. Ryu, *J. Mater. Chem. A*, 2020, **8**, 8300–8312.
- 7 C. F. Liu, Y. J. Lu and C. C. Hu, *ACS Omega*, 2018, **3**, 3429–3439.