SUPPORTING INFORMATION

Morphological Dependent Exciton Dynamics and Thermal Transport in MoSe₂ Film

Jay Deep Gupta, Priyanka Jangra, Bishnu Pada Majee, and Ashish Kumar Mishra School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu

University), Varanasi-221005, India

Email: akmishra.mst@iitbhu.ac.in

S1. Schematic of CVD synthesis

Fig. S1 Schematic diagram of (a) CVD setup to synthesize MoSe₂ and (b, c, d) the growth mechanism for hexagonal and snowlike MoSe₂.

S2. Raman mapping

The room temperature Raman mapping of MoSe₂ film clearly shows the presence of defect (D) peak throughout the region in snowlike MoSe₂, whereas it is missing in hexagonal MoSe₂.

Fig. S2 (a) Raman spectra of hexagonal (up) and snowlike (down) $MoSe_2$ with Raman mapping images (b, c) corresponding to A_{1g} peak and (d) corresponding to defect (D) peak of $MoSe_2$.

S3. Density functional studies

Fig. S3 Breaking of degeneracy in (a) conduction band and (b) valance band at K- point for 3L-MoSe₂ due to absence of inversion symmetry.

S4. Configurational coordinate diagram

Fig. S4 Configurational diagram depicting Mott-Seitz mechanism in MoSe₂.

S5. FWHM of temperature-dependent PL

The variations of full width at half maximum (FWHM) for high energy exciton (E_H) of snowlike and hexagonal MoSe₂ film in the temperature range 93-300 K are shown in **Fig. S5**. Due to defect-related inhomogeneous broadening and enhanced phonon–exciton interaction, the FWHM for the A exciton increases linearly with increasing temperature. The lattice vibrations increase at higher temperatures, which enhances electron-phonon scattering.

Additionally, the nonradiation process causes an increase in FWHM and decrease in PL intensity.

Fig. S5 Temperature dependence of FWHM for PL spectra of (a) snowlike (b) hexagonal MoSe₂ film over SiO₂/Si using LWD 50X objective lens.

S6. Temperature-dependent Raman

Temperature-dependent Raman spectra at remaining temperatures for prepared snowlike and hexagonal MoSe₂ film are shown in **Fig. S6**. The corresponding variation of FWHM for Raman modes are shown, indicating increase in FWHM with temperature.

Fig. S6 Temperature-dependent Raman spectra for (a) snowlike and (c) hexagonal MoSe₂ film and (b, d) their corresponding FWHM, using LWD 50X objective lens.

S7. Power-dependent Raman

Power-dependent Raman spectra using 100X objective lens for prepared snowlike and hexagonal MoSe₂ film over SiO₂/Si substrate are shown in **Fig. S7**. In **Fig. S7**, we observe that the incident laser power causes an increase in the FWHM of the A_{1g} mode. The lattice expansion and bond softening are the primary reason for the observed redshift in Raman modes and rise in FWHM with laser intensity.

Fig. S7 Lorentzian fitted power-dependent Raman spectra for (a) snowlike and (c) hexagonal MoSe₂ and (b,d) their corresponding Raman shifts with incident laser power, using 100X objective lens.

Fig. S8 Power dependence of FWHM using LWD 50X objective lens for (a) snowlike MoSe₂, and (c) hexagonal MoSe₂ film; power dependence of FWHM using 100X objective lens for (b) snowlike MoSe₂, and (d) hexagonal MoSe₂ film.

S8. Calculations of laser spot size at different objective lenses

The minimum laser spot size by the following formula can be given by^{S1–S4}

$$r_0 = \frac{\lambda}{\pi \times N.A} nm \tag{1}$$

Where, N.A is the numerical aperture of the objective lens and wavelength of the laser is denoted by λ .

For 100X objective lens (N.A.= 0.9), $r_0 = \frac{532}{3.14 \times 0.9} = 0.188 \sim 0.19 \ \mu m$

Similarly, for LWD 50X (N.A.=0.6), $r_0 = 0.282 \sim 0.28 \ \mu m$

Thus, the radius of the laser spot size for 100X and LWD 50X lenses are ~ 0.19×10^{-6} m and ~ 0.28×10^{-6} m, respectively.

S9. Calculation of α_a value for trilayer MoSe₂

For supported monolayer $MoSe_2$ we have chosen the value of absorption coefficient (α) 0.057 according to reported literature^{S5} then we calculated the value of trilayer $MoSe_2$ absorption coefficient by using the following equation^{S6}

$$\alpha_{a_{n+1}} = \alpha_{a_n} + (1 - \alpha_{a_n})\alpha_{a_{SL}} \tag{2}$$

 $\alpha_{a_2} = 0.057 + (1 - 0.057)0.057 = 0.111$

 $\alpha_{a_3} = 0.111 + (1 - 0.111)0.057 = 0.161$

S10. Calculations of R_m values at different objective lenses:

(a) Snowlike shaped MoSe₂ film

$$\chi_P$$
 = - 0.4797 cm⁻¹mW⁻¹ for LWD 50X objective lens

$$\chi_P$$
 = - 0.5619 cm⁻¹mW⁻¹ for 100X objective lens

$$\chi_T = -0.0096 \text{ cm}^{-1} \text{K}^{-1}$$

Therefore,

$$R_{m1} = \chi_P / \alpha \chi_T = 3.2886 \times 10^5 \text{ KW}^{-1}$$

 $R_{m2} = \chi_P / \alpha \chi_T = 3.8521 \times 10^5 \text{ KW}^{-1}$

(b) Hexagonal shaped MoSe₂ film

 χ_P = - 0.8307 cm⁻¹mW⁻¹ for LWD 50X objective lens

 χ_P = - 1.2236 cm⁻¹mW⁻¹ for 100X objective lens

$$\chi_T = -0.0115 \text{ cm}^{-1} \text{K}^{-1}$$

Therefore,

$$R_{m1} = \frac{\chi_P}{\alpha \chi_T} = 4.4871 \times 10^5 \text{ KW}^{-1}$$

 $R_{m2} = \frac{\chi_P}{\alpha \chi_T} = 6.6086 \times 10^5 \text{ KW}^{-1}$

References:

- S1. W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi and R. S. Ruoff, *Nano Letter*, 2010, 10, 1645–1651.
- S2. R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, H. G. Xing, ACS Nano, 2014, 8, 986–993.
- S3. A. P. Gertych, A. Łapińska, K. Czerniak-Łosiewicz, A. Dużyńska, M. Zdrojek, J. Judek, *Scientific reports*, 2019, 9, 1-7.
- S4. B. P. Majee, J. D. Gupta, A. Sanskrityayn and A. K Mishra, *Journal of Physical Chemistry C*, 2021, **125**, 14865–14873.
- S5. X. Zhang, D. Sun, Y. Li, G. H. Lee, X. Cui, D. Chenet, Y. You, T. F. Heinz and J. C. Hone, ACS Applied Materials & Interfaces, 2015, 7, 25923–25929.
- S6. J. Judek, A. P. Gertych, M. Winiarski, A. Lapińska, A. Duzuńska, M. Zdrojek, Scientific reports, 2015, 5, 1-11.