Supporting Information

Nanoarchitectonics on Z-scheme and Mott-Schottky heterostructure for photocatalytic water oxidation via dual cascade charge transfer pathways

Yao Li, Siyuan Liu, Runlu Liu, Jian Pan, Xin Li, Jianyu Zhang, Xiaoxiao Zhang, Yixin Zhao, Dawei Wang, Hengdao Quan, Shenmin Zhu*

1. Supplementary Figures

Fig. S1. Zeta potentials of the C₃N₄, BG, and CNBG.

Fig. S2. Specific surface areas of the C₃N₄, BG, and CNBG.

Fig. S3. High-resolution C 1s XPS spectra of the GO, BG, and CNBG.

Fig. S4. Raman spectra of the GO and BG.

Fig. S5. Digital photographs of the a) C_3N_4 , b) CNBG, and c) BG.

Fig. S6. a) XPS valence band spectra of the C_3N_4 and BG. Dashed lines mark baselines and tangents, the intersection value is the valence band edge. b) Energy band structure diagrams of the C_3N_4 and BG.

Fig. S7. Characterizations for the CNBG before or after cycling tests. a) XRD patterns. b) The TEM image after cycling tests.

2. Supplementary Tables

Photocatalysts	AQE (%)	References			
CNBG	26.35 (420 nm)	This Work			
ZrO ₂ /TaON/BiVO ₄	12.3 (420 nm)	<i>Nature Communications</i> . 2022 , <i>13</i> , 484.			
O _V -rich BG	23.19 (420 nm)	ACS Applied Materials & Interfaces. 2022, 14, 12180-12192. ACS Catalysis. 2020, 10, 8742-8750 Advanced Materials. 2018, 30, 1703119			
IrO _x -am@TiO ₂	7.82 (425 nm)	ACS Catalysis. 2020, 10, 8742-8750			
30-facets BiVO ₄ polyhedron	18.3 (430 nm)	Advanced Materials. 2018 , 30, 1703119			
Ultrapure BiVO₄/Graphene	19.8 (420 nm)	Nanoscale. 2020, 12, 14853-14862			
CoAl ₂ O ₄ /g-C ₃ N ₄	0.2 (420 nm)	ACS Catalysis. 2020, 10, 4960-4966			
Au/Al ₂ O ₃ /TiO ₂	1.6 (420 nm)	Advanced Functional Materials. 2020, 281, 2005688			
ZnO/BiVO ₄	5.0 (450 nm)	Nano Energy. 2018, 51, 764-773			
<i>p</i> -BiOBr	1.6 (405 nm)	Journal of the American Chemical Society. 2022 , 144, 3386-3397.			
Zn _{0.2} -PHI/PHI	3.6 (420 nm)	ACS Catalysis. 2021, 11, 13463-13471			

Table S1. Comparison of apparent quantum efficiency (AQE) of the CNBG with reported photocatalysts.

Table S2. Time-resolved PL decay curves were fitted by a biexponential function to calculate the fluorescence lifetime for the C_3N_4 , BG, and CNBG.

Samples	$ au_1$ (ns)	\mathbf{A}_{1}	$ au_2$ (ns)	A_2	$ au_{av}$ (ns)	χ^2
C ₃ N ₄	0.87	1297.41	5.16	93.85	2.16	0.99
BG	0.88	774.42	6.11	353.62	4.86	0.99
CNBG	1.11	1122.03	13.17	21.89	3.38	0.99