Supporting Information

Regulating the Surface Topography of CpG Nanoadjuvant via Coordination-Driven Self-assembly for Enhanced Tumor Immunotherapy

Li Zhang, Lingpu Zhang, Yuqi Wang, Kai Jiang, Chao Gao, Pengfei Zhang, Yujie Xie, Bin Wang, Haihua Xiao*, and Jie Song*

Materials. CpG-B (5'-TCCATGACGTTCCTGACGTT-3', 20 nt, 6059.0 g mol⁻¹, purification: ULTRAPAGE) and FAM-labeled CpG (FAM-5'-TCCATGACGTTCCTGACGTT-3', 20 nt, 6596.6 g mol⁻¹, purification: HPLC) were purchased from Sangon Biotech (Shanghai) Co., Ltd. Ferrous chloride tetrahydrate (FeCl₂·4H₂O, purity≥99.0%, 198.81 g mol⁻¹), magnesium chloride hexahydrate (MgCl₂·6H₂O, purity ≥99.0%, 203.3 g mol⁻¹) were purchased from Sigma-Aldrich (Shanghai) Trading Co., Ltd. Hoechst 33258 (Ex/Em: 352/461 nm), LysoTracker Red DND-99 (Ex/Em: 577/590 nm), CellTracker[™] Deep Red (Ex/Em: 630/660 nm) were from Invitrogen. Dulbecco's modified eagle medium (DMEM, [+] 4.5 g L⁻¹ D-glucose, [+] L-glutamine, [-] sodium pyruvate), fetal bovine serum (FBS), penicillin-streptomycin (P/S, [+] 5000 units mL⁻¹ penicillin, [+] 5000 units mL⁻¹ streptomycin), and Trypsin-EDTA solution were purchased from Gibco. 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, >98%), calcein AM and ethidium homodimer-1 (EthD-1) live/dead viability kit and phosphate-buffered saline (PBS, pH 7.2-7.4, 0.01 M) were from Solarbio. Ultrapure water was used throughout this research.

Instruments. NanoDrop One microvolume UV-Vis spectrophotometer (Thermo Scientific) was used for the concentration measurement of the DNA solution. G-Storm gradient PCR (Bio-Rad Laboratories, Inc.) was used for the constant temperature heating process. A circular dichroism spectrometer (Applied Photophysics Chirascan V100, Applied Photophysics) was used to characterize the assembly process. Transmission electron microscope (JEM-2100F, JEOL), scanning electron microscope (S-4800, Hitachi), and particle and molecular charge analyzer with a 633 nm He-Ne laser (Zetasizer Nano ZS ZEN3600, Malvern) were used to characterize the morphology, size and zeta potential of the synthesized nanoparticles. Flow cytometry (CytoFLEX LX, Beckman Coulter) with a 488 nm laser was used for the cellular uptake efficiency of FAM-labeled nanoparticles. Toptica confocal laser scanning microscope

with 405, 488, 561, and 640 nm solid laser (CSU-W1-SoRa, Nikon) was used for cell fluorescence imaging. Real-time qPCR analysis (Bio-Rad Laboratories, Inc.) was used for the gene profiling.

Samples	С _{_{СрG} [µM]}	C _{Fe²⁺} [mM]	Molar ratio (CpG: Fe ²⁺)	Solvent
NP ^{sp}	10	4	1: 400	ddH ₂ O
NP ^{ur}	10	2	1:200	$ddH_2O + Mg^{2+}$
NP ^{po}	10	8	1: 800	Tris buffer + Mg^{2+}
NP ^{bu}	80	80	1: 1000	Tris buffer + Mg^{2+}

Table S1. Feeding ratios of four structural CpG NPs

Table S2. Hydrodynamic sizes of CpG NPs determined by DLS

Samples	In ddH ₂ O		In PBS		
	Effective diameter [nm]	Polydispersity	Effective diameter [nm]	Polydispersity	
NP ^{sp}	173.7	0.20	158.7	0.21	
NP ^{ur}	132.1	0.39	121.7	0.47	
NP ^{po}	168.0	0.55	138.0	0.07	
NP ^{bu}	216.4	0.26	177.7	0.35	

Gene	Primer	
ATCD	Forward	5'-GGCTGTATTCCCCTCCATCG-3'
ATCB	Reverse	5'-CCAGTTGGTAACAATGCCATGT-3'
TNF-α	Forward	5'-TGGAACTGGCAGAAGAG-3'
ΠΝΓ-α	Reverse	5'-CCATAGAACTGATGAGAGG-3'
IL-12b	Forward	5'-TGTGGAATGGCGTCTCTGTC-3'
IL-12b	Reverse	5'-AGTTCAATGGGCAGGGTCTC-3'
Ang 1	Forward	5'-GTGGGAATGGAGGACATGGG-3'
Arg-1	Reverse	5'-GGATTAGCACCTGGTCCCG-3'
Mrc-1	Forward	5'-GTGGAGTGATGGAACCCCAG-3'
	Reverse	5'-CTGTCCGCCCAGTATCCATC-3'

Table S3. Forward and reverse primers used for gene profiling

Table S4. Inhibition percentage of M2 markers after incubation with PBS, free CpG, free

Samples	Gene expression after incubation with IL-4 for first 20 h		Gene expression after incubation with samples for second 20 h		Inhibition percentage of M2 markers	
	Arg-1	Mrc-1	Arg-1	Mrc-1	Arg-1	Mrc-1
Free CpG	23.81494	9.1942	0.37094	0.03242	98.4%	99.6%
Free FeCl ₂			0.22633	0.10899	99.0%	98.8%
NP ^{sp}			0.09354	0.03242	99.6%	99.6%
NP ^{ur}			1.01596	0.044	95.7%	99.5%
NP ^{po}			0.07622	0.02742	99.7%	99.7%
NP^bu			0.15313	0.04429	99.4%	99.5%

 \mbox{FeCl}_2 and four types of CpG NPs for 20 hours.

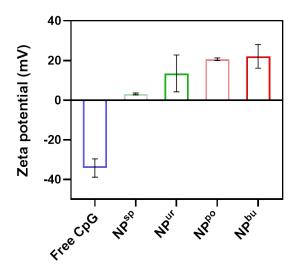


Figure S1. Zeta potentials of free CpG ODNs and CpG NPs.

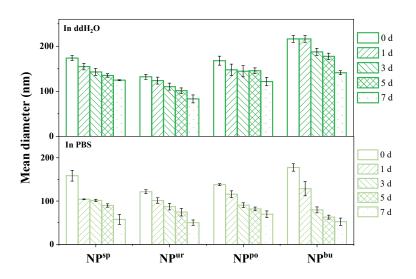
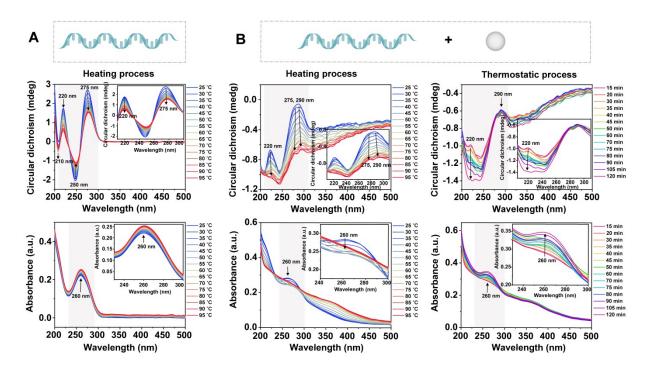
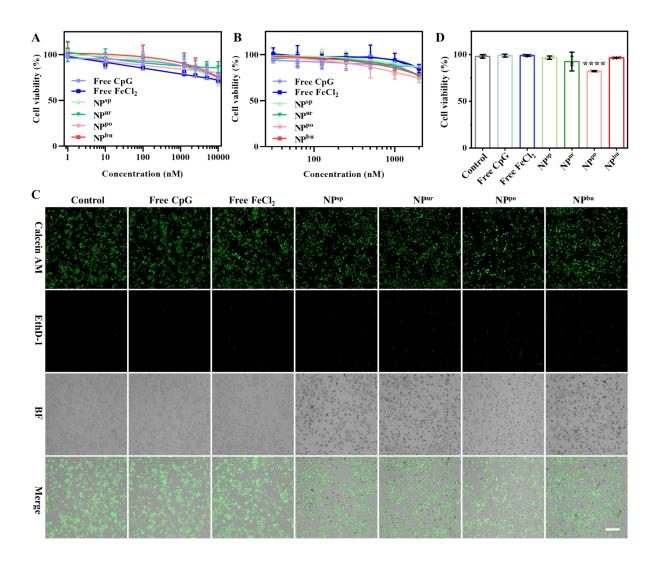
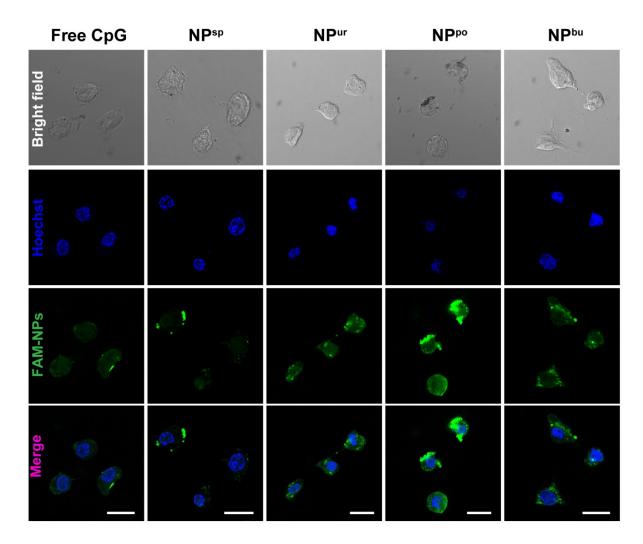
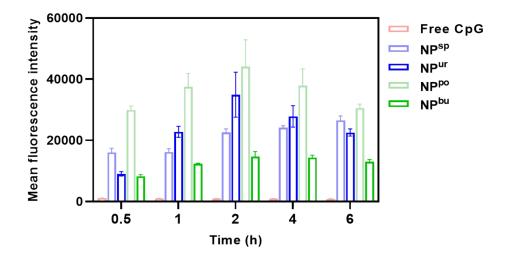
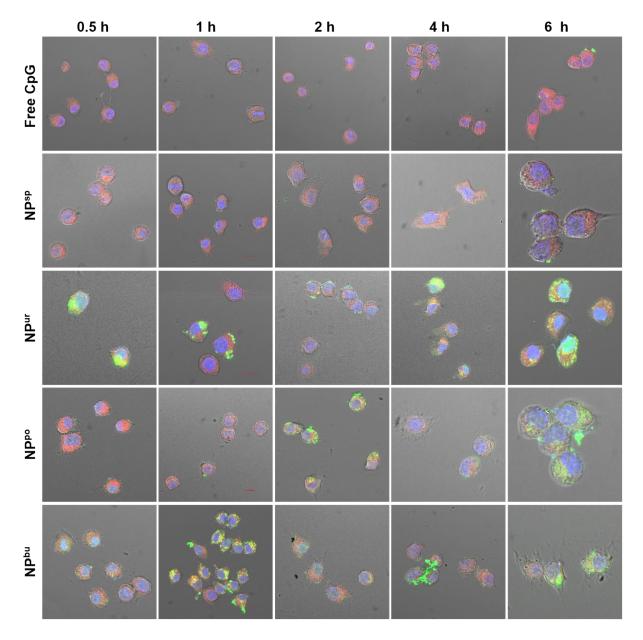
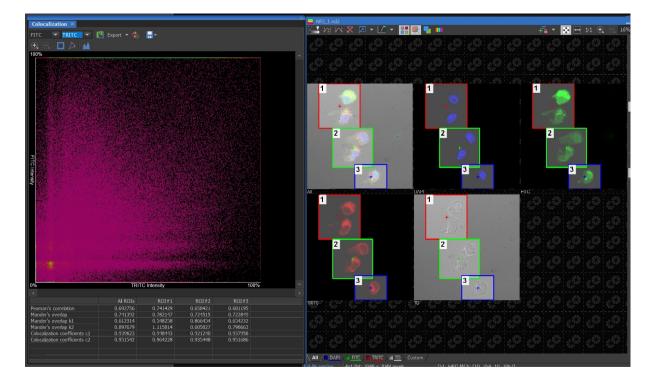




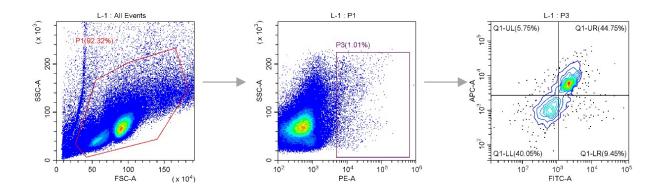
Figure S2. Structural stability of the four CpG NPs in ddH_2O and PBS buffer (pH 7.4) determined by DLS results.

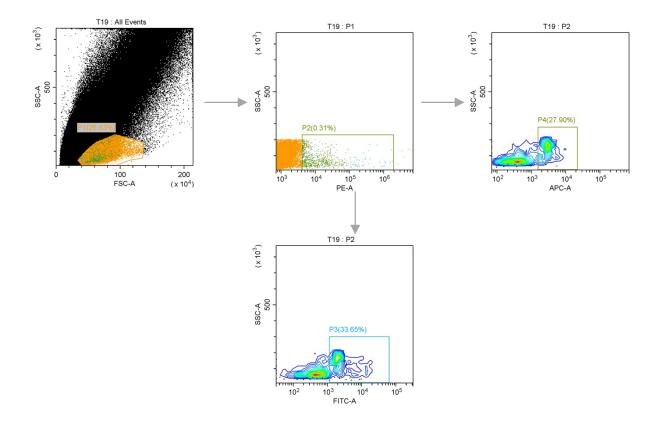
Figure S3. (A) Circular dichroism spectra (top) and ultraviolet-visible spectra (bottom) of free CpG ODNs in a heating process of 25~95 °C. Insert: amplification of the region corresponding to the characteristic absorption peaks. (B) Circular dichroism spectra (top) and ultraviolet-visible spectra (bottom) of the assembly solution in a heating process of 25~95 °C (left) and in a thermostatic process of 95 °C (right). Insert: amplification of the region corresponding to the characteristic absorption peaks.

Figure S4. *In vitro* cytotoxicity study of four structural CpG NPs. (A) Macrophage viability after incubation with free CpG, FeCl₂, and CpG NPs at a series of CpG concentration gradients (0~10000 nM) for 24 h. (B) Hacat viability after incubation with free CpG, FeCl₂, and CpG NPs at a series of CpG concentration gradients (0~2000 nM) for 24 h. Data were shown as mean \pm SD (n=6). (C) Fluorescence images of RAW264.7 cells after incubation with free CpG and CpG NPs at CpG equivalent 1000 nM, and 400 µM free FeCl₂ for 24 h. The assay stained live cells with calcein-AM (green), and dead cells with ethidium homodimer-1 (red). Scale bars, 200 µm. (D) Macrophage viability calculated from the live/dead cell-stained fluorescent images.


Figure S5. Confocal microscopy images of RAW264.7 cells incubated with free CpG and four CpG NPs for 4 h. Scale bar: 20 μ m.


Figure S6. Flow cytometry analysis of the cellular uptake efficiency of free CpG and CpG NPs after different times (0.5, 1, 2, 4, and 6 h) of incubation.


Figure S7. Representative fluorescence images collected from each sample group at each time point for co-location parameter analysis.

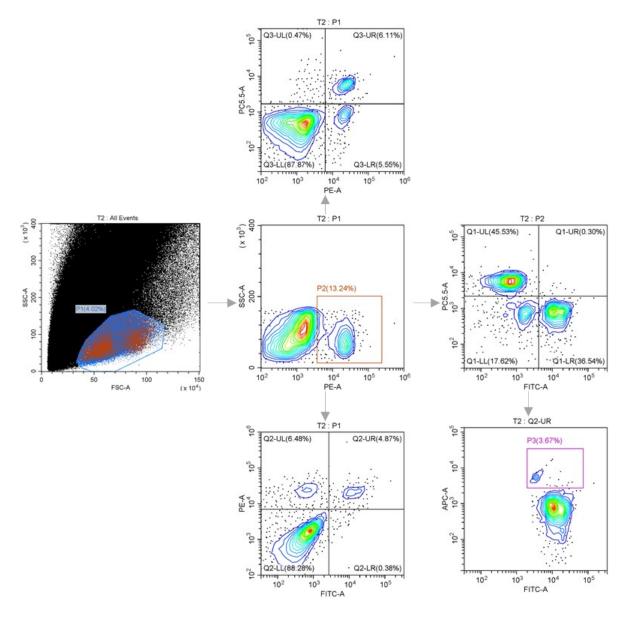
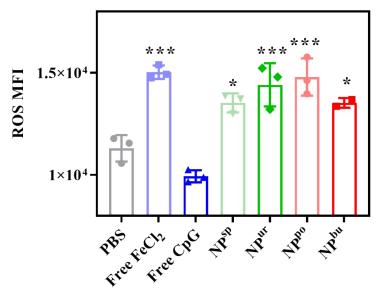
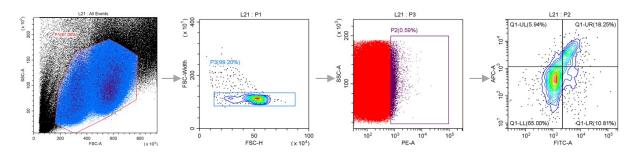
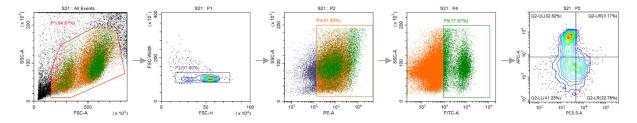

Figure S8. Co-localization parameters (Spearman's correlation and Manders' overlap) between green fluorescent pixels (FAM-labeled CpG) and red fluorescent pixels (LysoTracker) were analyzed by the NIS-Elements Analysis software. The figure above displays the image processing of the representative image captured from the cells treated with NP^{ur} for 4 h.

Figure S9. The gating strategy for DC maturation (Figure 4B). B16-OVA mice received intramuscular injections of OVA with different structural CpG NPs. The draining lymph nodes were collected 36 hours later for flow cytometry. Single cells were gated on FSC-A, PE-A and FITC-A.

Figure S10. The gating strategy for NK cell response (Figure 4C, D). Single cells were firstly gated in the basis of FSC-A and PE-A, then gated on APC-A and FITC-A.

Figure S11. Gating strategies for T cell responses (Figure 4E). Single cells were firstly gated in the basis of FSC-A, then gated on PE-A, follow with FITC-A.

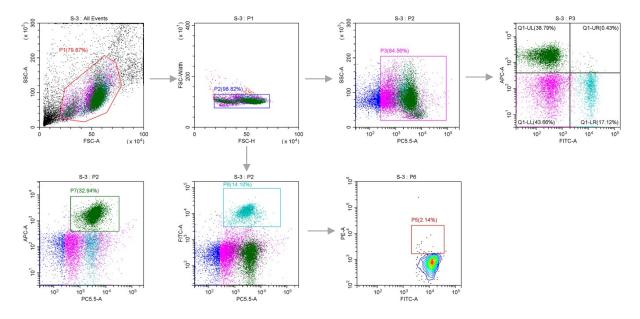

Figure S12. ROS levels in Hacat after incubation with free CpG and CpG NPs at CpG equivalent 1000 nM, and 400 μ M free FeCl₂ for 24 h.

Figure S13. The gating strategy for DC mature (Figure 5F). Single cells were gated on FSC-A, FSC-H, PE-A and FITC-A.

Figure S14. Gating strategies for T cell responses (Figure 5F). Single cells were firstly gated in the basis of FSC-A, FSC-H, PE-A, FITC-A and PC5.5-A.

Figure S15. Single cells were gated on FSC-A, FSC-H, PE-A, FITC-A and PC5.5-A for the analysis of expressions of CD4, CD8, and IFN- γ (Figure 5F).