Supporting Information

Carbon dots-based clay nanocomposite for efficient heavy metal removal

Khouloud Jlassi^{1*}, Maryam Al Ejji ¹, Abdelgalil Khalaf Ahmed ², Hafsa Mutahir², Mostafa H. Sliem¹, Aboubakr M. Abdullah^{1*}, Mohamed M. Chehimi^{3, *}, Igor Krupa¹

- 1. Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
- 2. College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
- 3. Université de Paris, ITODYS, UMR CNRS 7086, 15 rue JA de Baïf, 75013 Paris, France

*Correspondence:

khouloud.jlassi@qu.edu.qa (KJ); abubakr2@yahoo.com (AMA); and mohamed.chehimi@cnrs.fr (MMC)

Fig. S1. X-ray diffraction pattern of the graphitic waste

Fig. S2. FTIR of the graphitic waste and resulted in CDs.

Table S1.	.Calculation	of Quantum	Yield
-----------	--------------	------------	-------

Integrated P.L. intensity	Refractive index	Quantum yield

Quinine sulphate	403862.308	1.33	54%
CDs	2.14755 E-5	1.33	28.7 %

 $\Phi C = 54 \times (2.14755 \text{ E-5}/403862.308) \times (1.332/1.332) \% = 28.7 \%$

Fig S3.particle size distribution of CDs.

The selectivity test was evaluated in the presence of Cu^{2+} , Zn^{2+} , and Co^{2+} at pH 8.0, and the relative removal efficiency equals 48, 33, 66, and 95 %, respectively (Fig. S4).

Figure. S4. Raman spectra of graphite waste and CDs derivate.

Fig.S5. Selectivity test of B-CDs in presence of 30 ppm of Cu^{2+} , Zn^{2+} , and Co^{2+} at pH 8.0 and light conditions

Fig.S6.Effect of regeneration cycles on the removal efficiency of Pb(II) onto B-CDs using HNO₃ as desorbing agent

Chemical stability

To check the chemical stability of B-CDs adsorbent, the latter was dipped in different pH solutions, and the collected dried adsorbents (B-CDs-Pb), were found to be chemically stable, as shown in Fig. S6.

Fig.S7. FTIR spectra of BP-CDs-Pb under different acidic and alkaline conditions

To check the thermal stability of (B-CDs), the Pb removal study was conducted under different temperature, and the FTIR of the collected dried B-CDs-Pb adsorbent show that the used material is thermally stable, as shown in Fig. S7.

Fig.S8. FTIR spectra of BP-CDs after Pb removal at different under different temperature

First-order and pseudo-second-order models (equations 3, 4) were used to study the variations in adsorption with time^{2, 3}. The better correlation coefficient values were noted with the pseudo-second-order model compared to the first-order kinetics (Fig. 5c, S8 and Table 2).

Fig. S9. Pseudo-first -order mode for Pb(II) adsorption using B-CDs under light conditions.

Fig S10. Fitted PL spectrum of the nanoparticles at a 380 nm excitation wavelength.

Comparison with other adsorbents

Table S2 compares the adsorption capacity of Pb(II) using B-CDs nanohybrid with similar materials previously investigated.

Adsorbent	$\frac{Qm}{g^{-1}}$ /mg	Experimental conditions	t t/min	References
Kaolinite clay modified with polyphosphate	40	pH = 5, 25°C	60	1
Bentonite clay	26.3	pH = 4, T = 25 °C	60	2
Diazonium-based ion-imprinted polymer/clay nanocomposite	301	pH = 7, T = 30 °C	30	3
Magnetic Sepiolite Clay	96.15	pH = 7, T = 25 °C	30	4
Attapulgite clay modified with MgO	127.6	pH = 5, T = 55 °C	1440	5
Bentonite modified with Carbon dots	400	pH=8 T = 25°C UV=365 nm	45	This work

Table S2. Comparisor	n of some adsorben	t-based clay materia	als used for Pb(II) removal
----------------------	--------------------	----------------------	-----------------------------

References:

1. Amer, M. W.; Khalili, F. I.; Awwad, A. M. Journal of environmental chemistry and ecotoxicology **2010**, 2, (1), 001-008.

2. Khan, M.; Hegde, R.; Shabiimam, M. International Journal of Scientific Research and Management **2017**, *5*, (7), 5800-5804.

3. Msaadi, R.; Ammar, S.; Chehimi, M. M.; Yagci, Y. European Polymer Journal **2017**, 89, 367-380.

4. Fayazi, M. Analytical and Bioanalytical Chemistry Research **2019**, 6, (1), 125-136.

5. Huang, R.; Lin, Q.; Zhong, Q.; Zhang, X.; Wen, X.; Luo, H. Arabian Journal of Chemistry **2020**, 13, (4), 4994-5008.