Gold Nanorods Derivatized with CTAB and Hydroquinone or Ascorbic Acid: Spectroscopic Investigation of Anisotropic Nanoparticles of Different Shape and Size

Simone Amatori,^a Alberto Lopez, ^a Carlo Meneghini, ^a Annarica Calcabrini ^b, Marisa Colone ^b, Annarita Stringaro ^b, Sofia Migani,^b Ivan Khalakhan ^c, Giovanna Iucci, ^a Iole Venditti ^a and Chiara Battocchio *^a

SUPPLEMENTARY INFORMATION

Table S1. Experimental conditions and plasmonic peaks for AuNRs. $[AgNO_3] = 0.004 \text{ M}$, [CTAB] = 0.2 M, [AA] = 0.078 M, [HQ] = 0.1 M and $[HAuCl_4] = 0.001 \text{ M}$.

*Conditions of samples used for spectroscopic characterizations in this work

ID	AgNO ₃	Seed solution	Reducing	[HAuCl₄]	СТАВ	Plasmonic	Size Ratios (with
	(mL)	(mL)	agent (mL)	(mL)	(mL)	peaks (nm)	statistics from TEM
							measurements)
A	0.4	0.024	AA, 0.14	5	10	514-721	$L = 44 \pm 9 \text{ nm}; W = 12 \pm 12$
							8 nm;
							size ratio = 3.6
В	0.4	0.024	AA, 0.14	5	5	511-763	L = 42 ± 9 nm; W = 10 ±
							3 nm;
							size ratio = 4.2
							5120 1010 - 4.2
C*	0.4	0.024	AA, 0.07	5	5	511-768	L = 40 ± 6 nm, W = 10 ±
							2 nm;
							cizo ratio - 4.0
							5120 1 8110 - 4.0
D	0.4	0.024	HQ, 0.5	5	5	535-648	L = 95 ± 9 nm; W = 14 ±
							9 nm;
							size ratio = 6.0
E	0.2	0.160	HQ, 0,5	5	5	536-703-997	L = 113 ± 9 nm; W = 15±
							9 nm;
							size ratio = 7,5
F*	0.1	0.160	HQ, 0,5	5	5	535-720-1086	L = 100 ± 8 nm; W = 14 ±
							4 nm
							size ratio = 7.1

Table S2. XPS results collected on AuNRs-AA and AuNRs-HQ (BE, FWHM, Atomic Percentage values and proposed assignments).

Sample	Signal	BE	FWHM	Atomic	Assignment	
		(eV)	(eV)	Percentage (%)		
AuNRs-AA	C1s	285.00	1.34	86	C-C	
HO II		286.35		8	C-N/C-O CTAB+AA	
		287.78		4	C=O AA+impurities	
		289.15		2	COOH impurities	
⊥ ⊥∕¬♀	N1s	398.93	1.68	12	C-N CTAB – AA electrostatic	
0		400.03		26	interactions	
工		402.87		62	-N ⁺ terminal in "external" CTAB	
					-N ⁺ in Ag(I) – Br [_] – CTA ⁺ complex	
	Br3d _{5/2}	68.22	1.20	71	Br ⁻ counterions of CTAB	
		69.25		23	Br ⁻ in Ag(I) – Br ⁻ – CTA ⁺ complex	
		71.21		6	R-Br	
	Ag3d _{5/2}	367.32	0.56	88	Ag(I)	
		368.07		12	Ag(0)	
	Au4f	83.70	0.47	90	Au(0)	
		84.27		10	Au ^{δ+}	
AuNRs-HQ	C1s	285.00	1.20	85	C-C alifatic + aromatic	
		286.87		12	C-N/C-O CTAB+HQ	
ОН		288.12		2	C=O impurities	
		288.84		1	COOH impurities	
	N1s	399.60	1.62	42	-N ⁺ terminal in "external" CTAB	
Й		402.80		58	-N ⁺ in Ag(I) – Br [_] – CTA ⁺ complex	
	Br3d _{5/2}	68.11	1.21	62	Br ⁻ counterions of CTAB	
		69.22		34	Br ⁻ in Ag(I) – Br ⁻ – CTA ⁺ complex	
		70.97		4	R-Br	
	Ag3d _{5/2}	367.25	0.58	96	Ag(I)	
		367.85		4	Ag(0)	
	Au4f	83.11	0.46	82	Au(0)	
		83.71		18	Au ^{δ+}	

Figure S1. EDX data collected on a) AuNRs-HQ; b) AuNRs-AA

Figure S2. XPS spectra collected at C1s core-level on AuNRs-HQ and AuNRs-AA. C1s spectra of AuNRs-AA (a) and AuNRs-HQ (b) appear composite and at least four components can be individuated by following a peak-fitting procedure: the peak at lower BE (285.0 eV) is due to aliphatic C-C groups of CTAB and AA or, for AuNRs-HQ, C-C of CTAB superimposed to aromatic C of hydroquinone; the peaks at about 286.5 eV are due to C-N (CTAB) and C-O (AA, HQ) signals, that are impossible to deconvolute with the used resolution. The component at 287.8 eV in AuNRs-AA is attributed to the C=O functional group of AA, with a contribution attributed to adventitious carbon (C_{adv} = O) or amide groups arising by contaminants usually observed in samples prepared in wet environment, as also reported in the literature for CTAB-stabilized AuNRs [17: C. Oliveira et al., *J. materials res. technol.*, 2021, **15**, 768-776]. For AuNRs-HQ the entire 288eV spectral component arises from such impurities. Finally, the signal of extremely low intensity observed in both samples at 289.2 eV is due to carboxylic groups of contaminants (C_{adv}OOH), coherently with similar systems [*26: V. Secchi et al., ACS Biomater. Sci. Eng., 2019, 5, 2190–2199.*].

