Supplementary information.

One-pot green bio-assisted synthesis of highly active catalytic Palladium nanoparticles in Porcine Gastric Mucin for environmental applications

Roman Nudelman, Shir Zuarets, Meiron Lev, Shira Gavrieli, Louisa Meshi, Innes Zucker, Shachar Richter*

PdNp SUP		reaction rate (1/sec)	reaction rate (1/min)			
	4	0.0027	0.162			
	6	0.011	0.66			
	8	0.0186	1.116			
	10	0.0187	1.122			

PdNp WHO		reaction rate (1/sec)	reaction rate (1/min)
	4	0.0017	0.0102
	6	0.0058	0.348
	8	0.0065	0.39
	10	0.0175	1.05

PdNp PREP	reaction rate (1/sec)	reaction rate (1/min)			
4	0.0025	0.15			
6	0.0113	0.678			
8	0.0102	0.612			
10	0.0144	0.864			

Table 1 Kinetic rates of nitrophenol reaction with PdNp synthesized with PGM from three different fractions of particles produced from four different initial amounts of Pd precursor.

Cycle	PdCl2 (mg)	reaction rate (1/min)	reaction rate (1/s)	
	1	4	0.0208	0.000346667
	1	6	0.0318	0.00053
	1	8	0.0453	0.000755
	1	10	0.0454	0.000756667
	2	4	0.0175	0.000291667
	2	6	0.015	0.00025
	2	8	0.0272	0.000453333
	2	10	0.0141	0.000235
	3	4	0.0237	0.000395
	3	6	0.0359	0.000598333
	3	8	0.0421	0.000701667
	3	10	0.0369	0.000615

Figure S1 Kinetic rates of PdNp encapsulated in hydrogels from three different fractions and different PdNp weights per hydrogel pellet in three cycles of nitrophenol reduction.

	SUP			WHO				PREP		
4mg			4mg				4mg			
	Time (min)	Yield %		Time (min)		Yield %		Time (min)		Yield %
	60	20		e	50	26.66667			60	48
	120	58.66667		12	20	94.66667		1	20	93.73333
	180	84.4		18	30	95.6		1	80	98.26667
	240	81.73333		24	10	96.4		2	40	99.6
	300	100.1333		30	00	100.4		3	00	101.3333
6mg			6mg				6mg			
	Time (min)	Yield %		Time (min)		Yield %		Time (min)		Yield %
	15	84		1	15	90.66667			15	90.66667
	20	78.66667		2	20	97.33333			20	94.66667
	30	88		3	30	92			30	94.66667
	40	92		4	10	94.66667			40	100
	60	97.33333		6	50	92			60	100
8mg			8mg				8mg			
	Time (min)	Yield %		Time (min)		Yield %		Time (min)		Yield %
	15	84		1	15	81.33333			15	84
	20	89.33333		2	20	96			20	85.33333
	30	90.66667		3	30	85.33333			30	94.66667
	40	90.66667		L	10	86.66667			40	94.66667
	60	94.66667		6	50	96			60	97.33333
10mg			10mg				10mg			
	Time (min)	Yield %		Time (min)		Yield %		Time (min)		Yield %
	15	84		1	15	86.66667			15	90.66667
	20	96		2	20	88			20	92
	30	93.33333		3	30	90.66667			30	86.66667
	40	94.66667		1	10	96			40	89.33333
	60	97.33333		6	50	98.66667			60	97.33333

Table 2 Reaction times and bi phenyl product yield produced from Suzuki-Miyaura reaction catalyzed by PdNp from three different fractions synthesized from different amounts of initial PdCl2 precursor.

Figure S2 H-NMR (top) and FTIR (bottom) spectrums of produced bi phenyl product produced by Suzuki-Miyaura reaction catalyzed by SUP PdNp fraction of PdNp synthesized from 6mg of initial PdCl2 precursor.

Figure S3 optical image of produced PdNP fractions, B. optical image of hydrated(left) and dehydrated(right) PdNP hydrogel pellet catalyst.

Figure S4 PdNP agregated in large clusters collected from PREP fraction obtained from different initial concentration of PdCl2 ionic salt

Figure S5 SEM image showing Side view of the pristine hydrogel