Electronic Supplementary Information for

Two-dimensional self-assembly and co-assembly of two

tetracarboxylic acid derivatives investigated by STM

Xuan Peng,^{a, d, \xi} Linlin Gan,^{a, c, ξ} Wenchao Zhai,^d Xiaoling Chen,^d Ke Deng,^{*a} Wubiao Duan,^{*c} Wei Li,^{*d} Qingdao Zeng^{*a, b}

- a. CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
- b. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
- c. Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China.
- d. School of Science, Nanchang Institute of Technology, Nanchang 330099, China.

*Corresponding author E-mail: kdeng@nanoctr.cn; liweidting@nit.edu.cn; wbduan@bjtu.edu.cn; zengqd@nanoctr.cn.

 ξ Xuan Peng and Linlin Gan contributed to this work equally.

Fig. S1 Large-scale STM image of H₄BDETP's self-assembled nanostructure at the 1-heptanoic acid/HOPG interface with the tunneling conditions of I_{set} = 216.7 pA, V_{bias} = 707.4 mV.

Fig. S2 (a), (b) Large-scale STM images of H₄BTB's two self-assembled nanostructure (lamellar nanostructure in domain I and tetragonal nanostructure in domain II) at the 1-heptanoic acid/HOPG interface, both the tunneling conditions were: I_{set} = 363.2 pA, V_{bias} = 668.0 mV.

Fig. S3 Large-scale STM images of two-component system prepared by dropping H_4BTB to pre-assembled H_4BDETP with different molar ratios: (a) H_4BDETP : $H_4BTB > 2:1$, $I_{set} = 219.7 \text{ pA}$, $V_{bias} = 655.2 \text{ mV}$; (b) H_4BDETP : $H_4BTB = 2:1$, $I_{set} = 265.5 \text{ pA}$, $V_{bias} = 754.4 \text{ mV}$; (c) H_4BDETP : $H_4BTB < 2:1$, $I_{set} = 174.0 \text{ pA}$, $V_{bias} = 551.5 \text{ mV}$. (Domain I: H_4BDETP/H_4BTB co-assembly structure. Domain II: self-assembly structure of H_4BDETP . Domain III: self-assembly structure of H_4BTB)

Fig. S4 Large-scale STM images of assembled structures prepared by dropping H₄BDETP to pre-assembled H₄BTB with different molar ratios: (a) H₄BDETP: H₄BTB > 2:1, I_{set} =296.0 pA, V_{bias} = 578.9 mV; (b) H₄BDETP: H₄BTB = 2:1, I_{set} = 296.0 pA, V_{bias} = 578.9 mV; (c) H₄BDETP: H₄BTB < 2:1, I_{set} = 299.8 pA, V_{bias} = 699.8 mV. (Domain II: self-assembly structure of H₄BDETP. Domain III: self-assembly structure of H₄BTB)

Fig. S5 Large-scale STM images of two-component system prepared by pre-mixing H_4BTB and H_4BDETP solution: (a) $I_{set} = 241.1$ pA, $V_{bias} = 846.3$ mV, (b) $I_{set} = 335.7$ pA, $V_{bias} = 660.4$ mV. The concentration of H_4BTB increased from (a) to (b).