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Table S1. The content of Pt investigated by ICP-OES/MS.

Table S2. Comparison of the 4-nitrobromobenzene conversion and the 4-bromoaniline 

selectivity for Pt@KIT-6 nanocomposite in our study and some catalysts reported in 

the literature with the optimized conditions.

Catalyst H2 Pres. 
(MPa)

Temp. 
(˚C)

Time 
(min)

Conv. 
(%)

Selec. 
(%)

Stability 
(h) Reference

Pt@KIT-6 
nanocomposite 1.0 20 5 > 99 > 99 72 This work

Pt/NOMC 1.0 25 30 > 99 95.5 5 1

Pt/C 0.1 80 10 > 99 87.9 - 2

Pt@PNIPAM-SH 1.0 40 120 > 99 98.8 30 3

Pt/Fe3O4 1.0 30 120 98.4 95.1 10 4

PtZn/SiO2 0.1 40 72 > 99 > 99 - 5

Pt/H-NCNTs 0.5 40 20 > 99 > 99 1.3 6

Figure S1. (a) HRTEM image of Pt@KIT-6 nanocomposite; (b) Particle size 

distribution of Pt nanoparticles in Pt@KIT-6 nanocomposite; (c) SEM image of 

commercial bulk Pt/C.

ICP-OES ICP-OES ICP-MS

Entry Pristine
Pt@KIT-6 

nanocomposite

Running 24 hours
Pt@KIT-6 

nanocomposite

Operation 24 hours
Reaction solution

Pt 5.06±0.01%(w/w) 5.05±0.01%(w/w) trace
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Figure S2. (a) N2 adsorption-desorption isotherms and (b) pore size distribution of the 

KIT-6 treated similarly to the entire Pt@KIT-6 nanocomposite synthesis process 

without the addition of PtCl4.

Figure S3. Small-angle XRD pattern of Pt@KIT-6 nanocomposite after 24 h of 

reaction.
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Figure S4. TEM image of Pt@KIT-6 nanocomposite after 24 h of reaction.

Figure S5. EDS elemental mappings of Pt@KIT-6 nanocomposite after 24 h of reaction.

Figure S6. Wide-angle XRD pattern of Pt@KIT-6 nanocomposite after 24 h of reaction.

Figure S7. XPS spectrums of Pt@KIT-6 nanocomposite after 24 h of reaction: (a) Pt 

4f, (b) Si 2p, (c) O 1s.
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Figure S8. Catalytic stability test of Pt@KIT-6 nanocomposite. Reaction conditions: 4-

chloronitrobenzene (0.1 mol/L, methanol as solvent), catalyst (Pt@KIT-6 

nanocomposite, 50 mg), flow rate (0.10 mL/min), H2 (1.0 MPa), back-pressure (0.9 

MPa), 20 ˚C, 5.0 min.

Figure S9. (a) Small-angle XRD pattern, (b) Wide-angle XRD pattern, (c) TEM image 

of Pt@KIT-6 nanocomposite after 72 h of reaction.

Figure S10. (a) 4-Bromoaniline adsorption test of Pt@KIT-6 nanocomposite and 

commercial bulk Pt/C; (b) Determination of the adsorption rate constant .𝑘
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2a, 87%, 0.058 g/h 2b, 89%, 0.059 g/h 2c, 88%, 0.059 g/h 2d, 86%, 0.066 g/h 2e, 89%, 0.068 g/h

2f, 90%, 0.069 g/h 2g, 86%, 0.089 g/h 2h, 88%, 0.091 g/h 2i, 88%, 0.091 g/h

2j, 85%, 0.112 g/h 2k, 87%, 0.114 g/h 2l, 88%, 0.116 g/h 2m, 90%, 0.050 g/h

2n, 89%, 0.066 g/h 2o, 88%, 0.072 g/h 2p, 86%, 0.061 g/h 2q, 87%, 0.071 g/h

2r, 89%, 0.069 g/h 2s, 88%, 0.066 g/h 2t, 88%, 0.073 g/h 2f', 87%, 1.332 g/h

Scheme S1. Isolated yields and production rates of the isolated arylamines.

Synthesis of KIT-6. 

Mesoporous silica template KIT-6 was synthesized following the conventional method 

reported in the literature.7 18 g of Pluronic®P-123 and 30 mL of HCl (12 M) was added 

into 651 mL of water and the mixture was stirred at 35 ˚C to dissolve completely. Then, 

18 g of n-butanol was added and stirred for 1 h at 35 ˚C. Next, 38.7 g of TEOS was 

added to the above solution and stirred for 24 h at 35 ˚C, the solution was then heated 

under closed conditions for 24 h at 100 ˚C. After cooling the mixture to room 

temperature, it was filtered and washed thoroughly using ethanol. The Pluronic®P-123 

was then removed by calcination in a muffle furnace at 550 ˚C in the air for 5 h (heating 

rate = 1.5 ˚C min-1).
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Hydrogenation residence time in the MFBR.

When the catalyst loading and reactor geometry (diameter and length) are set, the 

residence time is controlled according to the solution flow rate. We compared the actual 

volume of liquid collected and the volume of solution consumed in the continuous flow 

system with steady state operation and found them to be consistent. The overall 

hydrogenation residence time is therefore the residence time of the solution in the 

MFBR. Add sufficient water to the MFBR and obtain a weight difference. The void 

volume of the MFBR is the volume of water corresponding to the weight difference, 

which is 0.5 mL. If we want to change the residence time in this continuous flow 

system, we only need to change the flow rate of the solution. The optimization 

experiments of the flow rate are also carried out to obtain the optimum residence time. 

Thus, when the optimum flow rate was 0.10 mL/min, the corresponding optimum 

residence time was 5.0 min.

Adsorption test

To test the adsorption behaviors of different catalysts, 8.6 mg 4-bromoaniline was 

added to 100 mL methanol and completely dissolved at 20 ˚C, followed by adding 100 

mg catalyst. The solution was sampled at given time intervals and the concentration of 

the left 4-bromoaniline in solution was determined by HPLC (Agilent 1100 Series). 

According to the change of 4-bromoaniline concentration ( ) with the time ( ), the 𝐶 𝑡

adsorption kinetic was studied based on the adsorption equation,
𝑑𝐶
𝑑𝑡
= 𝑘𝐶𝑛

where  and  referred to the adsorption rate constant and adsorption order, 𝑘 𝑛

respectively.

Characterization of the products
2-Fluoroaniline (2a) 8

NH2

F
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1H NMR (600 MHz, DMSO) δ 6.96 (ddd, J = 11.9, 8.1, 1.2 Hz, 1H), 6.89 – 6.84 (m, 1H), 6.81 – 6.76 
(m, 1H), 6.56 – 6.46 (m, 1H), 5.07 (s, 2H).
13C NMR (151 MHz, DMSO) δ 151.16 (d, J = 235.6 Hz), 136.82 (d, J = 12.1 Hz), 124.91 (d, J = 3.0 Hz), 
116.75 (d, J = 4.5 Hz), 116.40 (d, J = 6.0 Hz), 115.23 (d, J = 18.1 Hz).
3-Fluoroaniline (2b) 8

NH2F

1H NMR (600 MHz, DMSO) δ 7.00 (dd, J = 15.2, 8.1 Hz, 1H), 6.39 (ddd, J = 8.1, 2.0, 0.7 Hz, 1H), 6.34 
(dt, J = 12.0, 2.3 Hz, 1H), 6.24 (tdd, J = 8.9, 2.5, 0.7 Hz, 1H), 5.37 (s, 2H).
13C NMR (151 MHz, DMSO) δ 163.83 (d, J = 240.1 Hz), 151.34 (d, J = 10.6 Hz), 130.62 (d, J = 10.6 
Hz), 110.38 (d, J = 3.0 Hz), 102.09 (d, J = 21.1 Hz), 100.48 (d, J = 24.2 Hz).
4-Fluoroaniline (2c) 8

NH2

F
1H NMR (600 MHz, DMSO) δ 6.89 – 6.78 (m, 2H), 6.63 – 6.51 (m, 2H), 4.92 (s, 2H).
13C NMR (151 MHz, DMSO) δ 154.73 (d, J = 231.0 Hz), 145.59 (d, J = 1.5 Hz), 115.53 (d, J = 22.7 Hz), 
115.12 (d, J = 7.6 Hz).
2-Chloroaniline (2d) 9

NH2

Cl
1H NMR (600 MHz, DMSO) δ 7.18 (dd, J = 7.9, 1.4 Hz, 1H), 7.02 (ddd, J = 8.1, 7.3, 1.4 Hz, 1H), 6.82 
(dd, J = 8.1, 1.5 Hz, 1H), 6.61 – 6.47 (m, 1H), 5.30 (s, 2H).
13C NMR (151 MHz, DMSO) δ 145.10 (s), 129.42 (s), 128.09 (s), 117.59 (s), 117.30 (s), 115.94 (s).
3-Chloroaniline (2e) 9

NH2Cl

1H NMR (600 MHz, DMSO) δ 7.00 (t, J = 8.0 Hz, 1H), 6.62 (t, J = 2.1 Hz, 1H), 6.52 (ddd, J = 8.1, 2.1, 
0.8 Hz, 1H), 6.49 (ddd, J = 7.8, 2.0, 0.8 Hz, 1H), 5.38 (s, 2H).
13C NMR (151 MHz, DMSO) δ 150.82 (s), 133.88 (s), 130.77 (s), 115.47 (s), 113.53 (s), 112.87 (s).
4-Chloroaniline (2f) 9

NH2

Cl
1H NMR (600 MHz, DMSO) δ 7.60 – 6.76 (m, 2H), 6.73 – 6.33 (m, 2H), 5.22 (s, 2H).
13C NMR (151 MHz, DMSO) δ 148.15 (s), 128.95 (s), 119.22 (s), 115.68 (s).
2-Bromoaniline (2g) 10

NH2

Br
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1H NMR (600 MHz, DMSO) δ 7.33 (dd, J = 7.9, 1.1 Hz, 1H), 7.12 – 7.01 (m, 1H), 6.82 (dd, J = 8.0, 1.3 
Hz, 1H), 6.55 – 6.38 (m, 1H), 5.27 (s, 2H).
13C NMR (151 MHz, DMSO) δ 146.21 (s), 132.57 (s), 128.74 (s), 117.84 (s), 115.92 (s), 107.97 (s).
3-Bromoaniline (2h) 9

NH2Br

1H NMR (600 MHz, DMSO) δ 6.94 (t, J = 8.0 Hz, 1H), 6.76 (t, J = 2.0 Hz, 1H), 6.65 – 6.59 (m, 1H), 
6.55 (dd, J = 8.1, 2.0 Hz, 1H), 5.37 (s, 2H).
13C NMR (151 MHz, DMSO) δ 151.05 (s), 131.12 (s), 122.57 (s), 118.30 (s), 116.40 (s), 113.20 (s).
4-Bromoaniline (2i) 11

NH2

Br
1H NMR (600 MHz, DMSO) δ 7.37 – 6.87 (m, 2H), 6.79 – 6.18 (m, 2H), 5.24 (s, 2H).
13C NMR (151 MHz, DMSO) δ 148.50 (s), 131.79 (s), 116.30 (s), 106.61 (s).
2-Iodoaniline (2j) 8

NH2

I
1H NMR (600 MHz, DMSO) δ 7.54 (dd, J = 7.8, 1.3 Hz, 1H), 7.17 – 6.99 (m, 1H), 6.78 (dd, J = 8.0, 1.3 
Hz, 1H), 6.33 (td, J = 7.8, 1.4 Hz, 1H), 5.19 (s, 2H).
13C NMR (151 MHz, DMSO) δ 148.87 (s), 138.91 (s), 129.53 (s), 118.62 (s), 114.91 (s), 83.69 (s).
3-Iodoaniline (2k) 9

NH2I

1H NMR (600 MHz, DMSO) δ 6.96 (d, J = 1.7 Hz, 1H), 6.86 – 6.72 (m, 2H), 6.56 (dt, J = 7.2, 1.9 Hz, 
1H), 5.28 (s, 2H).
13C NMR (151 MHz, DMSO) δ 150.93 (s), 131.30 (s), 124.36 (s), 122.41 (s), 113.68 (s), 95.74 (s).
4-Iodoaniline (2l) 8

NH2

I
1H NMR (600 MHz, DMSO) δ 7.43 – 7.17 (m, 2H), 6.64 – 6.30 (m, 2H), 5.26 (s, 2H).
13C NMR (151 MHz, DMSO) δ 148.96 (s), 137.56 (s), 117.03 (s), 76.24 (s).
Aniline (2m) 11

NH2

1H NMR (600 MHz, DMSO) δ 7.03 (t, J = 7.8 Hz, 2H), 6.59 (d, J = 7.6 Hz, 2H), 6.51 (t, J = 7.3 Hz, 1H), 
4.99 (s, 2H).
13C NMR (151 MHz, DMSO) δ 149.05 (s), 129.28 (s), 116.19 (s), 114.41 (s).
4-Anisidine (2n) 11
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NH2

O
1H NMR (600 MHz, DMSO) δ 6.71 – 6.63 (m, 2H), 6.59 – 6.51 (m, 2H), 4.59 (s, 2H), 3.63 (s, 3H).

13C NMR (151 MHz, DMSO) δ 151.20 (s), 142.73 (s), 115.49 (s), 114.97 (s), 55.75 (s).
4-Aminobenzoic Acid (2o) 8

NH2

HOOC
1H NMR (600 MHz, DMSO) δ 11.94 (s, 1H), 7.76 – 7.50 (m, 2H), 6.71 – 6.40 (m, 2H), 5.87 (s, 2H).
13C NMR (151 MHz, DMSO) δ 167.98 (s), 153.61 (s), 131.69 (s), 117.37 (s), 113.06 (s).
2-Aminobenzonitrile (2p) 12

NH2

CN
1H NMR (600 MHz, DMSO) δ 7.36 (dd, J = 7.8, 1.3 Hz, 1H), 7.32 – 7.26 (m, 1H), 6.80 (d, J = 8.4 Hz, 
1H), 6.58 (t, J = 7.5 Hz, 1H), 6.01 (s, 2H).
13C NMR (151 MHz, DMSO) δ 152.06 (s), 134.39 (s), 132.86 (s), 118.59 (s), 116.37 (s), 115.67 (s), 
93.91 (s).
4-Aminobenzamide (2q) 13

NH2

H2N

O
1H NMR (600 MHz, DMSO) δ 7.60 (d, J = 8.6 Hz, 2H), 7.54 (s, 1H), 6.84 (s, 1H), 6.53 (d, J = 8.6 Hz, 
2H), 5.60 (s, 2H).
13C NMR (151 MHz, DMSO) δ 168.59 (s), 152.15 (s), 129.59 (s), 121.39 (s), 112.95 (s).
5-Amino-2-chloropyridine (2r) 14

N
NH2

Cl
1H NMR (600 MHz, DMSO) δ 7.72 (d, J = 2.9 Hz, 1H), 7.08 (d, J = 8.5 Hz, 1H), 7.00 (dd, J = 8.5, 3.0 
Hz, 1H), 5.49 (s, 2H).
13C NMR (151 MHz, DMSO) δ 144.99 (s), 136.51 (s), 135.59 (s), 124.26 (s), 124.19 (s).
2-Methoxy-5-amino pyridine (2s) 15

N
NH2

O
1H NMR (600 MHz, DMSO) δ 7.54 (d, J = 2.5 Hz, 1H), 7.03 (dd, J = 8.6, 2.8 Hz, 1H), 6.55 (dd, J = 8.6, 
2.2 Hz, 1H), 4.74 (s, 2H), 3.72 (d, J = 2.6 Hz, 3H).
13C NMR (151 MHz, DMSO) δ 156.21 (s), 139.86 (s), 131.58 (s), 126.82 (s), 110.42 (s), 53.10 (s).
5-Amino-2-pyridinecarboxylic acid (2t) 16
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N
NH2

HOOC
1H NMR (600 MHz, DMSO) δ 7.98 (d, J = 2.5 Hz, 1H), 7.75 (d, J = 8.5 Hz, 1H), 6.95 (dd, J = 8.5, 2.6 
Hz, 1H), 6.17 (s, 2H).
13C NMR (151 MHz, DMSO) δ 166.61 (s), 148.54 (s), 135.70 (s), 135.06 (s), 126.60 (s), 118.98 (s).
4-Chloroaniline (2f’) 9

NH2

Cl
1H NMR (600 MHz, DMSO) δ 7.12 – 6.92 (m, 2H), 6.70 – 6.46 (m, 2H), 5.22 (s, 2H).
13C NMR (151 MHz, DMSO) δ 148.12 (s), 128.94 (s), 119.29 (s), 115.70 (s).
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