Concentration of flower-like	Fit	Fitting formula : $I=I_0+A^*exp(-(t-t_0)/B)$; B = 1/ reaction constant (K)									
AgNC	y ₀	t ₀	А	В	K=1/B	R-square					
Free catalysts (Flower Au-AgNC)											
I st cycle rxn	-0.471	6.938	1.272	35.29	0.0283	0.953					
1 st cycle rxn	-0.0146	2.793	1.052	71.246	0.0140	0.975					
I st cycle rxn	115.920	4.45 x10 ⁶	-42.86	4.51 x10 ⁶	~0	0.410					
	Fixed	catalysts (Flo	ower Au-Agl	NC)							
1 st cycle rxn	0.0313	-1.623	0.953	88.15	0.0113	0.997					
1 st cycle rxn	0.0202	-0.324	0.978	83.39	0.0120	0.999					
I st cycle rxn	0.0202	-0.324	0.979	83.26	0.0120	0.999					

Table S1 Stability testing of flower Au-AgNC nanocrystal as catalysts: curves fitted with exponential decay equations.

S1 Concentration-dependent reactivity tests of flower Au-AgNC nanocrystals as catalysts freely suspended in the reaction solution were characterized by the change of 4-NP concentration in extinction spectra with reaction time. To compare with the catalytic performance of flower Au-AgNC nanocrystals fixed in a polystyrene matrix, the concentration of flower Au-AgNC nanocrystals freely suspended in the reaction solution was converted into the amount of substrate, which had flower Au-AgNC nanocrystals were fixed on it.

S2 Concentration-dependent reactivity tests of flower Au-AgNC nanocrystals as catalysts fixed in a polystyrene matrix were characterized by the change of 4-NP concentration in extinction spectra with reaction time. The concentration of flower Au-AgNC nanocrystals fixed in a polystyrene matrix was measured by the amount of the substrate.

Concentration of free flower Au-	Fitting formula : y=y ₀ +A*exp(-(t-t ₀)/B) ; B = 1/ reaction constant (K)								
AgNC (# of substrate)	Y ₀	t ₀	А	В	K=1/B	R-square			
$I_{\rm LSPR} = 0.19$	1.0616	49.79	-0.024	285.66	0.0035	0.878			
$I_{\rm LSPR} = 0.34$	-0.0057	71.56	1.021	71.246	0.014	0.996			
$I_{\rm LSPR} = 0.51$	-0.0389	24.00	1.016	64.526	0.0155	0.980			
$I_{\rm LSPR} = 0.98$	-0.03184	12.00	1.038	36.208	0.02762	0.961			
$I_{\rm LSPR} = 1.45$	0.00218	10.99	1.002	24.506	0.04063	0.972			
$I_{\rm LSPR} = 1.68$	0.02669	10.18	0.922	18.514	0.05402	0.989			
$I_{\rm LSPR} = 2.13$	0.02028	0.146	0.989	17.600	0.05682	0.992			

Table S2 Concentration-dependent reactivity tests of flower Au-AgNC nanocrystal as catalysts freely suspended in reaction solution: curves fitted with exponential decay equations.

Table S3 Concentration-dependent reactivity tests of flower Au-AgNC nanocrystal as catalysts fixed in a polystyrene matrix: curves fitted with exponential decay equations.

Concentration of fixed flower-	Fitting formula : y=y ₀ +A*exp(-(t-t ₀)/B) ; B = 1/ reaction constant (K)							
Au-AgNC (# of substrate)	y ₀	t ₀	А	В	K=1/B	R-square		
$I_{\text{LSPR}} = 1$	0.2774	4.302	0.716	139.17	0.0072	0.982		
$I_{\rm LSPR} = 2$	0.1195	1.332	0.872	117.51	0.0085	0.996		
$I_{\rm LSPR} = 4$	0.0313	-1.623	0.953	88.15	0.0113	0.961		
$I_{\rm LSPR} = 5$	0.0150	0.067	0.988	77.12	0.0130	0.972		

S3 Concentration-dependent reactivity tests of cage Au-AgNC nanocrystals as catalysts fixed in a polystyrene matrix were characterized by the change of 4-NP concentration in extinction spectra with reaction time. The concentration of cage Au-AgNC nanocrystals fixed in a polystyrene matrix was measured by the amount of the substrate.

Concentration of fixed cage- Au-	Fitting formula : y=y ₀ +A*exp(-(t-t ₀)/B) ; B = 1/ reaction constant (K)								
AgNC (# of substrate)	У 0	t ₀	А	В	K=1/B	R-square			
$I_{\rm LSPR} = 1$	0.4444	2.781	0.560	191.33	0.0052	0.994			
$I_{\rm LSPR} = 2$	0.1104	-0.199	0.901	163.28	0.0061	0.998			
$I_{\rm LSPR} = 3$	0.0803	0.600	0.933	114.92	0.0087	0.998			
$I_{\rm LSPR} = 4$	0.0116	-0.229	0.990	84.42	0.0118	0.999			
$I_{\rm LSPR} = 5$	-0.0420	2.629	1.053	55.69	0.0180	0.988			

Table S4 Concentration-dependent reactivity tests of cage Au-AgNC nanocrystal as catalysts fixed in a polystyrene matrix: curves fitted with exponential decay equations.

S4 Shape-dependent reactivity tests of silver-based nanocrystals as catalysts fixed in a polystyrene matrix. SEM images showed three different morphologies of silver-based nanocrystals: flower Au-AgNC (black), cage Au-AgNC (red), and pristine AgNC(blue). Changes in the concentration of 4-NP with three different morphologies nanocrystal as catalysts decayed exponentially with reaction time. The scale bar was 100 nm.

S5 Energy-dispersive X-ray spectroscopy (EDS) of flower Au-AgNC nanocrystal (A) and cage Au-AgNC nanocrystal (B) exhibited that the gold content in flower Au-AgNC nanocrystal was 2.5 at% and the gold content in cage Au-AgNC nanocrystal was 22.0 at%.

S6 Theoretical calculation of the surface area of cage-like Au-AgNC and pristine AgNC as 4-NP reduction catalysts. (A) schematic of cage-like Au-AgNC. (B) schematic cross-section of cage-like Au-AgNC. (C) theoretical calculation of the surface area of cage-like Au-AgNC. (D) Theoretical calculation of the surface area of pristine AgNC.

S7 Concentration-dependent reactivity tests of Ag_2S -AgNC nanocrystals as catalysts fixed in a polystyrene matrix were characterized by the change of 4-NP concentration in extinction spectra with reaction time. The concentration of cage Ag_2S -AgNC nanocrystals fixed in a polystyrene matrix was measured by the amount of the substrate, which was adjusted by the number of nanocrystals in a polystyrene matrix.

Concentration of fixed core shell-	Fitting formula : y=y ₀ +A*exp(-(t-t ₀)/B) ; B = 1/ reaction constant (K)								
Ag_2S - $AgNC$ (# of substrate)	y ₀	t ₀	А	В	K=1/B	R-square			
$I_{\rm LSPR} = 0.88$	0.7200	16.085	0.270	195.73	0.0051	0.994			
$I_{\rm LSPR} = 1.75$	0.6690	10.878	0.326	156.34	0.0064	0.990			
$I_{\rm LSPR} = 2.63$	0.5129	9.306	0.468	140.75	0.0071	0.987			
$I_{\rm LSPR} = 3.77$	0.4761	9.153	0.519	124.10	0.0080	0.990			
$I_{\rm LSPR} = 5.05$	0.4238	22.828	0.517	123.48	0.0081	0.984			

Table S5 Concentration-dependent reactivity tests of Ag₂S-AgNC nanocrystal as catalysts fixed in a polystyrene matrix: curves fitted with exponential decay equations.

S8 The morphology of Ag₂S-AgNC nanocrystals changed with the reaction as shown in (A). The stability tests of Ag₂S-AgNC nanocrystals fixed as catalysts in a polystyrene matrix were characterized by the change in extinction spectra with reaction time as shown in (B). (C) Changes in the concentration of 4-NP during 1st cycle (black point) and 2nd cycle (red points) reaction decayed exponentially with reaction time.

S9 Changes in the concentration of 4-NP under Ag2S-AgNC nanocrystals with different S contents as catalysts decayed exponentially with reaction time as shown in (A). There were two different sulfur contents in Ag₂S-AgNC nanocrystal as catalysts: the sulfur content in Ag₂S-AgNC nanocrystal was 4.0 at% as EDX shown in (B). And the sulfur content in Ag₂S -AgNC nanocrystal was 7.7 at% as EDX shown in (C).

Table S6 Stabili	ty test and sulfur	content-depend	ent reactivity	tests of Ag ₂	S-AgNC	c nanocrystal	as catalysts
f	xed in a polysty	rene matrix: cur	ves fitted with	n exponentia	l decay o	equations	

Concentration of fixed core shell-	Fitting formula : y=y ₀ +A*exp(-(t-t ₀)/B) ; B = 1/ reaction constant (K)								
Ag ₂ S-AgNC (# of substrate)	y ₀	t ₀	А	В	K=1/B	R-square			
$I_{\rm LSPR} = 5.05 \ 1^{\rm st}$ cycle rxn	0.4238	22.828	0.517	123.48	0.0081	0.984			
$I_{\rm LSPR} = 5.05 \ 2^{\rm nd}$ cycle rxn	0.3520	6.147	0.650	113.93	0.0087	0.984			

Concentration of fixed core shell-	Fi	itting formula:	y=y ₀ +A*exp(-(t-t	: ₀)/B) ; B = 1/ rea	ction constant (I	к)
Ag_2S - $AgNC$ (# of substrate)	Y ₀	t ₀	А	В	K=1/B	R-square
$I_{\rm LSPR} = 5.05$ lower S content	0.4238	22.828	0.517	123.48	0.0081	0.984
$I_{\rm LSPR} = 5.05$ higher S content	0.4392	26.114	0.500	128.80	0.0078	0.984

Concentration of fixed flower-	Fitting formula : y=y ₀ +A*exp(-(t-t ₀)/B) ; B = 1/ reaction constant (K)								
Au-AgNC (# of substrate) without irradiation assistance	y ₀	t ₀	А	В	K=1/B	R-square			
$I_{\rm LSPR} = 1$	0.7391	20.9302	0.6656	240.0767	0.0042	0.991			
$I_{\rm LSPR} = 2$	0.1462	3.8174	0.8466	190.5623	0.0052	0.999			
$I_{\rm LSPR} = 3$	0.0985	0.2222	0.8988	152.0171	0.0066	0.999			
Concentration of fixed flower-	Fitting formula : y=y ₀ +A*exp(-(t-t ₀)/B) ; B = 1/ reaction constant (K)								
Concentration of fixed flower-	Fit	ting formula:y	/=y ₀ +A*exp(-(t-t	₀)/B) ; B = 1/ rea	action constant	(К)			
Concentration of fixed flower- Au-AgNC (# of substrate) with irradiation assistance	Fit y ₀	ting formula: y	r=y₀+A*exp(-(t-t A	₀)/B) ; B = 1/ re a B	action constant K=1/B	(K) R-square			
Concentration of fixed flower- Au-AgNC (# of substrate) with irradiation assistance $I_{LSPR} = 1$	Fit y ₀ 0.5138	ting formula : y t _o 5.6058	г=y₀+А*ехр(-(t-t А 0.4807	0)/B) ; B = 1/ re B 216.5481	K=1/B 0.0046	(К) R-square 0.998			
Concentration of fixed flower- Au-AgNC (# of substrate) with irradiation assistance $I_{LSPR} = 1$ $I_{LSPR} = 2$	Y0 0.5138 0.1649	ting formula : y t ₀ 5.6058 9.8275	x=y₀+A*exp(-(t-t A 0.4807 0.7920	B 216.5481 168.5371	action constant K=1/B 0.0046 0.0059	(K) R-square 0.998 0.999			

Table S7 Flower-like Au-AgNC nanocrystal as catalysts with and without irradiation assistance

S10 The schematic of reaction equipment setting up which includes the 4-NP aqueous solution in a quartz cuvette. The reducing agent (NaBH₄ aqueous solution) and Ag-based nanocrystals-PS matrix were then added into the quartz cuvette to study the reduction rate of 4-NP.

S11 Comparison of the number of silver nanocrystals in the literature and that used in our experiment when treatment with the same concentration of 4-NP aqueous solution.

Catalysts	type	# of catalyst (mole)	4-NP (mole)	NaBH ₄ (mole)	# of catalyst /4-NP	Overall rxn time	Reference
	Ag-Au Flower (fixe catalyst)	3.45×10^{-15}	2.25×10^{-7}	6×10^{-5}	1.53 ×10 ⁻⁸	~250 min	
Ag based bicomponent	Ag-Au Flower (freely suspended)	2.07×10^{-14}	2.25×10^{-7}	$6 imes 10^{-5}$	9.20 ×10 ⁻⁸	~ 3 min	This manuscript
NP	Ag-Au Cage (fixe catalyst)	3.45×10^{-15}	2.25×10^{-7}	6×10^{-5}	1.53 ×10 ⁻⁸	~175 min	
	Ag-Ag ₂ S (fixe catalyst)	3.45×10^{-15}	2.25×10^{-7}	6×10^{-5}	1.53×10^{-8}	~350 min	
Ag-Au bime	tallic NP	3×10^{-13}	2.25×10^{-7}	1.5×10^{-5}	1.33 ×10 ⁻⁶	~ 3 min	23
Ag-Au bimetal	lic NP + GO	1.8×10^{-8}	3.85×10^{-6}	4.4×10^{-4}	4.67 ×10 ⁻²	~ 5 min	а
Au N	Р	8.8×10^{-8}	1.35×10^{-6}	2.145×10^{-3}	6.52 ×10 ⁻²	~5 min	b
Ag N	Р	1.39×10^{-5}	3.0×10^{-7}	3×10^{-5}	0.463	~8 min	с

Table S8 compared the catalytic performance of Ag-based bicomponent nanocrystals with other literatures.

a. Wu, T.; Zhang, L.; Gao, J.; Liu, Y.; Gao, C.; Yan, J. Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. J. Mater. Chem. A 2013, 1 (25), 7384–7390. b. K. Kuroda, T. Ishida, M. Haruta, Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA, J. Mol. Catal. A Chem., 298 (1) (2009), pp. 7-11. c. S. Jana, S.K. Ghosh, S. Nath, S. Pande, S. Praharaj, S. Panigrahi, S. Basu, T. Endo, T. Pal, Synthesis of silver nanoshell-coated cationic polystyrene beads: A solid phase catalyst for the reduction of 4-nitrophenol, Appl. Catal., A, 313 (1) (2006), pp. 41-48.

S12 High concentration freely suspended follower-like Au-AgNC nanocrystals (~6 substrates) as catalysts for 4-NP reduction. The extinction spectra of 4-NP showed that the reaction can be completed in about 3 mins.

S13 Schematic of the setup used to synthesis bi-component nanocrystals, which partially embedded AgNC as "seeds".