Supporting Information for

Formation of intermetallic PdIn nanoparticles: Influence of surfactants on nanoparticle structure

Baiyu Wang¹, Jette K. Mathiesen², Andrea Kirsch¹, Nicolas Schlegel³, Andy S. Anker¹, Frederik L. Johansen¹, Emil T.S. Kjær¹, Olivia Aalling-Frederiksen¹, Tobias M. Nielsen¹, Maria S. Thomsen¹, Rasmus K. Jakobsen¹, Matthias Arenz³, Kirsten M.Ø. Jensen^{*1}

- 1) Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
 - 2) Department of Physics, Technical University of Denmark, Fysikvej, 2800 Kongens Lyngby, Denmark

3) Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland

*Corresponding author: kirsten@chem.ku.dk

Figure S1a. Rietveld refinements of PXRD patterns obtained from syntheses c1-c6 (a-f).

Figure S1b. Rietveld refinements of PXRD patterns obtained from syntheses a) c7, b) c8, c) ci, d) cii, e) a1 and f) b1.

		PdIn			Pd ₃ In ^a				In ₂ O ₃		
Sample	Rwp /%	Frac /%	a /Å	Size /nm	Frac /%	a /Å	c /Å	Size /nm	Frac /%	a /Å	Size /nm
a1	3.4				60(2)	4.0929(8)	3.759(1)	7.0(3)			
					40(2)	4.044(2)	3.833(3)	5.1(3)			
b1	3.1				61(1)	4.0844(4)	3.7555(5)	10.8(3)			
					39(1)	4.0418(6)	3.833(1)	8.3(4)			
c1	3.1	46(2)	3.2363(5)	10.4(3)	54(2)	4.105(1)	3.764(3)	3.9(1)			
c2	3.4	53(3)	3.2386(5)	11.0(1)	47(3)	4.096(2)	3.795(3)	3.9(2)			
	3.5	.5			35(1)	4.0839(6)	3.7947(8)	8.5(4)	33(1)	10.112(2)	3.5(2)
c3					32(1)	4.0257(7)	3.913(1)	7.2(3)			
c4	3.1				36(1)	4.0860(6)	3.8065(9)	12.4(5)	24(1)	10.116(3)	5.6(1)
					40(1)	4.0309(7)	3.941(1)	8.2(3)			
c5	3.9	64(2)	3.2346(5)	8.0(1)	36(2)	4.086(2)	3.828(4)	4.0(2)			
c6	3.6	67(3)	3.2369(4)	9.7(1)	33(3)	4.056(2)	3.895(3)	4.2(2)			
c7	2.9				44(2)	4.133(4)	3.623(7)	1.6(1)	12(1)	10.091(6)	3.0(1)
					44(2)	4.027(1)	3.893(2)	4.6(2)			
c8	2.6				43(1)	4.136(4)	3.671(6)	1.9(1)	10(1)	10.092(4)	5.4(2)
		2.6			47(1)	4.0260(9)	3.908(1)	5.5(2)			
	2.9				53(2)	4.094(2)	3.749(3)	3.9(1)	00(1)	10.119(3)	6.4(2)
ci					19(2)	4.016(2)	3.897(3)	8(1)	28(1)		
cii	11				72(2)	4.091(2)	3.763(3)	3.0(1)			
CII	4.4				28(2)	4.009(2)	3.906(2)	7.6(8)			
PdIn ^[1]			3.246			4.0700(1)	0.7040(2)				
Pd ₃ In ^[2]						4.0729(1)	3.7918(2)			10 117(1)	
$II_2U_3^{[0]}$										10.117(1)	

Table S1. Parameters obtained from Rietveld refinements.

Errors are given in parentheses

^aWhen two Pd₃In phases were fitted, the first row gives the values of Pd₃In(1), while the second row gives Pd₃In(2) ^[1] Literature data taken from the ICSD (59473), Savitskii, E.m.; Polyakova, V.P.; Urvachev, V.P., An

^[1] Literature data taken from the ICSD (59473), Savitskii, E.m.; Polyakova, V.P.; Urvachev, V.P., An investigation of the polythermal Pn In - Pd Sc cross-section. *Metally, Izvestiya Akademii Nauk SSSR* **1980**, 226-230.

^[2] Literature data taken from the ICSD (59476), Harris, I.R.; Norman, M.; Bryant, A.W., A study of some palladium-indium, platinum-indium and platinum-tin alloys. *Journal of the Less-Common Metals* **1968**, *16* (4), 427-440

^[3] Marezio, M., Refinement of the crystal structure of In2 O3 at two wavelengths. *Acta Cryst.* **1966**, *20*, 723-728

Figure S2. Absorption spectra of the metal precursor PdBr₂ with different additives, OA and TOP.

Figure S3. PXRD patterns of the products from syntheses **c5-c8**, containing different surfactants: c5) OLA+AA, c6) OLA+OA+AA, c7) OLA+TOP+AA, c8) OLA+OA+TOP+AA.

Figure S4. PDFs obtained from the PdIn-precursor solution at room temperature from syntheses c1 and c2.

Figure S5. Calculated PDFs from PdIn (blue) and Pd₃In (red) model respectively.

Figure S6. Real-space Rietveld refinement of PDFs from final product produced by a) synthesis **c1** and b) synthesis **c2**.

Table S2.	Refined	values	obtained	from PD	F refineme	nt of the	last frame	of PDFs	from	synthese	s c1
and c2 .											

	Synthesis c1	Synthesis c2
Rw	0.123	0.166
Phase fraction / %	85 / 15	54 / 46
(PdIn / Pd₃In)		
Scale factor	0.845/ 0.599	0.261/ 0.427
(PdIn / Pd₃In)		
SPdiameter / Å	39	36
(Pd₃In)		
Pd₃In cell / Å	4.11 /	4.07/
(a / c)	3.78	3.86
PdIn cell / Å	3.25	3.25
δ_2/\dot{A}^2	4.5	4.3
U _{iso} (Pd) /Å ²	0.022 /	0.046 /
(PdIn / Pd₃In)	0.020	0.021
U _{iso} (In) /Å ²	0.030 /	0.061 /
(PdIn / Pd₃In)	0.079	0.021

For both samples, the parameters refined included scale factors, unit cell parameters, atomic displacement parameters (ADPs), spherical diameter (SPdiameter) and δ_2 , which accounts for the correlated local atomic motion in the structure.

Figure S7. Rwp values from sequential refinements of PDFs from syntheses **c1** and **c2**, are shown in red and blue respectively. Rwp values from the single Pd₃In model are shown in hollow circles while Rwp values from the two-phase model are shown in filled dots.

Figure S8: PDFs obtained from the PdIn-precursor solution at room temperature from syntheses c3 and c4.

Figure S9. Real-space Rietveld refinement of PDFs from final product produced by a) synthesis **c3** and b) synthesis **c4**.

Table S3. Refin	ed values of	otained from P	DF refinement	of the last	frame of F	PDFs from	Syntheses c	:3
and c4 .								

	Synthesis c3	Synthesis c4
R _w	0.358	0.378
Phase fraction / %	93 / 7	93 / 7
(PdIn / Pd₃In)		
Scale factor	0.217/ 0.203	0.078/ 0.080
(Pd ₃ In / In ₂ O ₃)		
SPdiameter / Å	33 / 64	34 / 75
(Pd ₃ In / In ₂ O ₃)		
Pd₃In cell / Å	4.08 /	4.08/
(a / c)	3.90	3.93
In ₂ O ₃ cell / Å	10.14	10.14
δ_2/\dot{A}^2	0.9	0.9
U _{iso} (Pd) /Å ²	0.024	0.019
(Pd₃In)		
U _{iso} (In) /Ų	0.024 /	0.019 /
(Pd₃In / In₂O₃)	0.008	0.009
U _{iso} (O) /Å ²	0.008	0.009
(In ₂ O ₃)		

For both samples, the parameters refined included scale factors, unit cell parameters, atomic displacement parameters (ADPs), spherical diameter (SPdiameter)and δ_2 , which accounts for the correlated local atomic motion in the structure.

Figure S10. Rwp values from two-phase sequential refinements of PDFs from syntheses 3 and 4, are shown in red and blue respectively.

References:

1. Coelho, A.A., *TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++.* Journal of Applied Crystallography, 2018. **51**(1): p. 210-218.