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1 Bulk scaling of a single polymer
Here we briefly report the results on the simulations of ho-
mopolymer chains in the bulk. The polymer model used is
the Kremer-Grest model, the same one reported in the main
text. The average radii of gyrations Rg = ξAMνA computed as
a function of the molecular weights M are reported in semi
logaritmic scale in Fig. S1 for two different solvent qualities. In
panel a), we fit the model-dependent parameter ξA obtaining,
ξA = 0.487±0.006 (fitting both the prefactor and the exponent,
we get νA = 0.594±0.030, ξA = 0.474±0.064).
Repeating the same in bad solvent in panel b) we determine
ξB = 0.535±0.003 (νB = 0.302±0.001, ξB = 0.606±0.004).
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Fig. S1 Bulk gyration radius of a free polymer a) in good solvent (cut-
off 6√2a) b) in bad solvent (cutoff 2.0a) as a function of the degree of
polymerization M. Blue lines report the fit at fixed exponent νA =0.588,
νB =0.33.
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2 Scaling regime of the reference homopolymeric
brush

As we will make extensive usage of Scaling Theories within our
adsorption study, we report in this section on the validations of
the scaling properties of the brush that has been used in this
work as a reference. In particular we show, that the reference
brush, composed by chains of length M =200 and grafting density
σga2 =0.064, is - as expected - in the so called parabolic regime.

We report, in Fig.S2 the rescaled distribution P(z)/σ
(1−νA)/νA
g as

a function of the rescaled height z/
(

Mσ
(1−νA)/(2νA)
g

)
for M =200

and several values of σg. The distribution P(z) is, as in the main
text, the probability density to find a particle at height z, mea-
sured from the bottom plane z = 0; νA = 0.588 is the scaling expo-
nent in good solvent.

Moreover, as shown in Fig. S2, we find that the profile of the
brush follows the self-consistent field theory prediction1, with a
parabolic shape in the stretched regime. By rescaling the plot as
the Alexander-de Gennes theory suggests, we find that all curves
above σg/σ∗ = σgR2

g = 1 fall on a master-curve, as expected,
bringing further proof that the reference system is in the scaling
regime.
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Fig. S2 Rescaled probability density P(z)/σ
(1−νA)/νA
g as a function of the

rescaled height z/
(

Mσ
(1−νA)/(2νA)
g

)
for M =200 and several values of σg.

Values of σ > σ∗ ≈ 0.009 are expected to fall on a master-curve.
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3 Equivalent diblock copolymer picture of adsorp-
tion

In this section we report some details on the mapping procedure
that has been used to obtain the scaling relation for adsorbing
brushes that, for the sake of clarity, we have not included exten-
sively in the main text.

3.1 Coordination number of a single adsorbed colloid

We start from the calculation of the number of interacting
monomers per adsorbed colloid in the limit of vanishing number
of adsorbed colloids γint(η

c
a ≈ 0) = γ0. The calculation is approxi-

mate but it does not require input from the data.
As mentioned in the main text, we assume that, when a single col-
loid is adsorbed, it is surrounded by the highest possible number
of monomers; we assume that, in any case, the packing fraction
of the monomers around the colloid will not be different from
the average packing density in the unperturbed brush. We thus
consider a spherical shell around the colloid, whose radius can be
quantified, in a statistical sense, as follows. Consider two parti-
cles, interacting with each other via the Lennard-Jones potential
(Eq. (1) of the main text, with aα = acm. The average distance
and its variance can be computed within the saddle-point approx-
imation, and are given by

⟨r⟩= 2
1
6 acm = r0 (S1)

and by

⟨(r− r0)
2⟩= a2

cm

32 ·2
2
3 εcm

= a2
std (S2)

respectively. We can thus estimate the radius of the spherical shell
as

astat = r0 +nstdastd

= acm

(
2

1
6 +nstd

√
1

32 ·2
2
3 ε

)
(S3)

where nstdastd can be interpreted, assuming a Gaussian statistics,
as an “interval of confidence” of the distance between the two
particles. Naturally, the statistics is not really Gaussian, as the
two particles cannot come close than acm, but, for our purposes,
it works well. In what follows, we set nstd =3.

Having a suitable interaction radius, we compute γ0 = γint(η
a
c ≈

0) as

γ0 = ηb

4
3 π(amc +astat/2)3 − 4

3 π(ac/2)3

4
3 π(astat/2)3

(S4)

where ηb is, as mentioned, the packing fraction of the unper-
turbed brush

ηb =
π

6
σ

3
m

N ·M
LxLyH0

(S5)

where, as in the main text, N is the number of chains, M is the
number of monomers per chain, Lx, Ly are the length of the
box in the x and y direction and H0 is the height of the unper-
turbed brush. We can thus interpret γ0 as the number of “effec-
tive” colloids that can be packed in the spherical shell of radius

amc +astat/2, with packing fraction ηb.

3.2 Estimation of the local coordination number

In this section, we give some more details on the choice and on
the use of the SANN algorithm.
It is not advisable to estimate the coordination number with a
cut-off based method because, in most cases, the results depend
on the choice of the cut-off2. We elected to use the SANN method
to determine the number of interacting monomers around the ad-
sorbed colloids. Briefly, the SANN algorithm identifies neighbours
by “filling” the solid angle around the target particle; the distance
with the farthest neighbor can be effectively taken as a cut-off
distance and, accordingly, such distance may be different for each
particle. Therefore, SANN can be considered as a locally adaptive
algorithm2.
We iterate the SANN algorithm over all the adsorbed colloids in
the system and determine a cut-off for each of them; the resulting
distributions, at different values of the colloid packing fraction ηc,
are shown in S3. Interestingly, the cut-off distributions resemble
a Gaussian on a first approximation, which is in agreement with
the statistical approximation introduced in Section 3.1.
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Fig. S3 Distribution of cut-off radii using the SANN algorithm for the
case εmc = 4.0kBT and σga2

c = 0.064, reported in the main text, and several
values of ηc: a) 1.30e-04 b) 3.11e-03 c) 3.74e-03 d) 4.91e-03 e) 6.51e-03
f) 8.44e-03 g) 0.01 h) 0.01 i) 0.02 j) 0.02 k) 0.03 l) 0.04 m) 0.05 n) 0.07
o) 0.09 p) 0.10 q) 0.14 r) 0.17 s) 0.23 t) 0.31.

As said in the main text, the important quantity for our map-
ping is the number of interacting monomers per chain Mint: a
straightforward use of the algorithm would lead to an overesti-
mation for the number of interacting monomers, as explained in
the main text. We observed that, by itself, SANN tends to over-
estimate Mint, as it can select distant monomers as neighbours,
especially if the grafting density or the colloid packing fraction
is not very high. We thus determine, at fixed values of εmc, σg

and ηc, the average cut-off distance from the distributions (e.g.
Fig. S3) we find that, among the results obtained for different
values of ηc, fixed εmc and σg, choosing the smallest value yields
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the optimal results.
We remark that we preferred the SANN algorithm over something
more conventional, such as fixing the cut-off as the minimum of
the radial pair distribution function g(r) because, in our setting,
we come across two complications. First, in general, the number
of adsorbed colloid is not constant in equilibrium and should be
tracked. Second, we are interested in the radial distribution in-
side the brush and the volume of the brush is always fluctuating.
Computing a reliable estimate of such a volume is not completely
obvious. Thus, overall, we found the SANN approach as more
suitable.

3.3 Calculation of the exponent ζ

In the main text, we report the power law exponent of the func-
tion γint as ζ = ln(γ0/γ1)/ln(M/γ1). We briefly clarify here how it
can be computed. Simply, if we take the logarithm of both sides
of a power law such as Eq. (17) of the main text, we obtain

ln(γint) = ln(γ0)+ζ ln(na
c) (S6)

thus converting the power law to a linear relation between ln(γint)

and ln(na
c). The exponent ζ is the slope of such a line. We can thus

take the two extremes na
c = 1 and na

c = na∗
c of this first power law

regime and compute the corresponding values of γint, γint(1) = γ0

and γint(na∗
c ) = γ1. The slope is thus

ζ =
ln(γ1)− ln(γ0)

ln(na∗
c )− ln(1)

(S7)

which gives the result in the main text upon exploiting the prop-
erties of the logarithms and substituting the definition of na∗

c

3.4 On the fitting procedure used for Eq.(25) of the main
text

As in the previous case, to simplify the fitting procedure, we take
the logarithms of both sides of the equation, to switch from a
power law to a linear relationship.

lnH = νBx∗+b (S8)

where
x∗ =

1
νA

ln(M+mBna
c) (S9)

and

b = ln(H0σ

1−νA
2νA

g ξ

1
νB

B ) (S10)

It is possible to fit linearly the logarithm of the data belonging
to the interval na

c > na∗
c . We perform two separate fits: in the first

one, we leave both νB and ξB as fitting parameters, constraining
νB to a lower limit νB = 0.33. As visible in the Table S1, the values
of νB thus obtained are compatible with the imposed lower limit.
For convenience and for coherence with the picture of a collapsed
brush that we have adopted so far, we fix the values of νB and
keep only ξB. We report this latter fit in Fig. 6 of the main text.
The estimates of ξB are compatible with each other; we notice
that their values are much higher than the reported value of ξB

for a bulk free chain in bad solvent (see Section 1).

4 Additional comparison between scaling theory
and simulation

We report here briefly on the results obtained upon varying the
binding energy εmc at fixed grafting density σg and upon varying
σg at a fixed value of εmc.

4.1 Comparison at fixed σga2 = 0.064

We first show, in Fig. S4, some snapshots of the system in equi-
librium at fixed εmc = 2kBT and different values of the colloid
packing fraction ηc.

Fig. S4 Snapshots of the adsorbing brush at fixed εmc = 2.0kBT and
different values of ηc a) ηc = 0.102, b) ηc = 0.204, c) ηc = 0.246, d)
ηc = 0.331, e) ηc = 0.382, f) ηc = 0.796.

One can immediately appreciate the same adsorption phe-
nomenology, upon increasing ηc, that has been described in the
main text. In addition, in Fig. S4f, one can observe the “saturated”
regime, where the brush is not able to adsorb any more colloids.
Such regime has not been reached, within the interval of ηc con-
sidered, in the case reported in the main text (εmc = 4kBT ).
In what follows, we report the same observables, discussed in the
main text, for εmc = 1,2kBT . We start from the probability density
to find either a colloid or a monomer at height z; we report such
quantity in Figs. S5,S6 where we report the case εmc = 1kBT in
Fig. S5 and the case εmc = 2kBT in Fig. S6.

We can appreciate that, for εmc = 1kBT , the brush profile is not
perturbed, even at high values of ηc. Further, we can observe that,
at the highest value of ηc, there is a fraction of colloids that are
not adsorbed. A different behavior emerges for εmc = 2kBT , where
the brush deforms significantly upon adsorption and collapses,
as in the main text. Nevertheless, we can observe here as well
that, at the highest value of ηc, there is a fraction of unadsorbed
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νB free νB fixed

εmc σg γ0 νB ξB b ξB b

4.0 0.064 16.8 0.35 ± 0.03 0.9 ± 0.1 -0.9 ± 0.2 0.939 ± 0.004 -0.74 ± 0.01
2.0 0.064 15.0 0.33 ± 0.04 1.1 ± 0.3 -0.45 ± 0.39 1.11 ± 0.01 -0.45 ± 0.02
1.5 0.064 14.2 0.33 ± 0.10 1.2 ± 0.7 -0.35 ± 1.05 1.18 ± 0.01 -0.35 ± 0.02
1.0 0.064 12.9 0.33 ± 0.08 1.5 ± 0.7 0.03 ± 0.83 1.47 ± 0.02 0.03 ± 0.02

Table S1 Table of the results of the fitting of Eq. (25) of the main text in the appropriate interval na
c > na∗

c .
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Fig. S5 Probability density P(z) to find either a colloid (orange dashed
line) or a monomer (blue full line) at height z as a function of the re-
duced height z/H0, H0 being the height at ηc =0, for εmc = 1kBT at
different values of the colloid packing fraction a) ηc =0.102 b) ηc =0.204
c) ηc =0.246 d) ηc =0.331 e) ηc =0.382 f) ηc =0.796.
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Fig. S6 Probability density P(z) to find either a colloid (orange dashed
line) or a monomer (blue full line) at height z as a function of the reduced
height z/H0, H0 being the height at ηc =0, for εmc = 2kBT at different
values of the colloid packing fractions a) ηc =0.00414 b) ηc =0.012 c)
ηc =0.041 d) ηc =0.069 e) ηc =0.148 f) ηc =0.637

colloids, diffusing in the system.
More quantitatively, we can look at the same rates reported in the
main text: i) Average fraction of adsorption sites θ = Mint/M, ii)
average fraction of adsorbed colloids na

c/nc, iii) average number of
adsorption sites per adsorbed monomer γint = Mint/na

c, iv) average
number of contacts per adsorbed colloid Mbonds/na

c. We report the
results in Fig. S7, showing the case εmc = 1kBT in panel a) and
εmc = 2kBT in panel b).

Fig. S7 Average fraction of adsorption sites Mint/M (orange crosses), av-
erage fraction of adsorbed colloids na

c/nc (green triangles), average num-
ber of adsorption sites per adsorbed monomer Mint/na

c (red stars), average
number of contacts per adsorbed colloid Mbonds/na

c (blue diamonds) as
a function of ηa

c for a) εmc = 1kBT , b) εmc = 2kBT . The alternative axis
reports the corresponding values of ηc.

By comparing the two panels between themselves and with
Fig. 5 of the main panel, we can make a few interesting obser-
vations. First, the value of γ0 = γint(0) decreases upon decreasing
εmc, meaning that a single adsorbed colloid is, on average, less
tightly bound by the polymeric chains. This is in line with the fact
that, in turn, the adsorption does not strongly modify the confor-
mation of the chains and the profile of the brush. Interestingly,
for εmc = 1kBT , if ηc is high enough, the fraction of interacting
monomers still reaches unity, while na

c/nc < 1 always and start de-
creasing at lower values of ηc. This suggests that at εmc = 1kBT
the colloids distribute evenly within the brush and, since adsorp-
tion is not strong enough, there is a dynamical equilibrium, where
colloids can be exchange between the brush and the fluid. How-
ever, this is not the right scenario for most cases, where one wants
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to retain the adsorbed material and, in case, release it in a con-
trolled fashion. Instead, at εmc = 2kBT , na

c/nc is equal to one for a
rather large interval of values of ηc and only at ηa

c >> ηa∗
c it starts

decreasing, as colloids are not adsorbed anymore (see Figs. S4,
S6).
Finally, we report the comparison between the scaling theory and
the numerical simulations in Fig. S8 for εmc = 1kBT and in Fig. S9
for εmc = 2kBT .
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Fig. S8 Comparison between numerical results and theoretical predictions
for both H and γint as a function of ηa

c for εmc = 1kBT . Lines and symbols
as in the main text.
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Fig. S9 Comparison between numerical results and theoretical predictions
for both H and γint as a function of ηa

c for εmc = 2kBT . Lines and symbols
as in the main text.

While for εmc = 2kBT the theory captures both the adsorption
process (through γint) and the effect of the adsorption on the
brush conformation (through H), for εmc = 1kBT we only qual-
itatively capture the behaviour of γint. This is remarkable, and
shows that the framework laid in the paper is robust. On the
other hand, as mentioned in the main text, the binding affinity
between monomers and colloids is not sufficient to drive the com-
plete collapse of the brush at εmc = 1kBT . As the latter is one of
the hypothesis of the theory, the match can not be expected.

4.2 Comparison at fixed εmc = 1.5kBT

In what follows, we report the same observables, discussed in the
main text, for σg ·a2 = 0.032,0.048,0.064,0.08. We start from the

probability density to find either a colloid or a monomer at height
z; we report such quantity in Figs. S10-S13 where we report the
different cases following the increase in σg ·a2.
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Fig. S10 Probability density P(z) to find either a colloid (orange dashed
line) or a monomer (blue full line) at height z as a function of the reduced
height z/H0, H0 being the height at ηc =0, for σga2 = 0.032 at different
values of the colloid packing fraction a) ηc =4.06e-04 b) ηc = 0.051 c)
ηc =0.102 d) ηc =0.304 e) ηc =0.355 f) ηc =0.406

0

1

2 (a)𝑃mon(𝑧/𝐻0)
𝑃col(𝑧/𝐻0)

(b)

0

2

𝑃
(𝑧

/𝐻
0) (c) (d)

0 1 2
𝑧/𝐻0

0.0

0.5

1.0
(e)

0 1 2
𝑧/𝐻0

(f)

Fig. S11 Probability density P(z) to find either a colloid (orange dashed
line) or a monomer (blue full line) at height z as a function of the reduced
height z/H0, H0 being height at ηc =0, for σga2 = 0.048 at different values
of the colloid packing fraction a) ηc =3.52e-04 b) ηc =0.044 c) ηc =0.088
d) ηc =0.264 e) ηc =0.308 f) ηc =0.352

One can again appreciate the same adsorption phenomenol-
ogy, upon increasing ηc, described in the main text and in the
previous section in Figs. S10-S13. In addition, we observe that,
upon increasing σg ·a2, the brush becomes more resilient against
the collapse and, in general, more a higher concentration of ad-
sorbed colloids is needed to disturb its original parabolic profile.
We can also observe that, at the highest values of ηc, the fraction
of unadsorbed colloids diminishes upon increasing the grafting
density. As mentioned in the main text, this makes increasing the
grafting density akin to increasing the interaction energy εmc; this
equivalence will be explored in the future.
More quantitatively, we can look at the same rates reported in
the main text: i) Average fraction of adsorption sites θ = Mint/M,
ii) average fraction of adsorbed colloids na

c/nc, iii) average num-
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Fig. S12 Probability density P(z) to find either a colloid (orange dashed
line) or a monomer (blue full line) at height z as a function of the reduced
height z/H0, H0 being the height at ηc =0, for σga2 =0.064 at different
values of the colloid packing fraction a) ηc =3.18e-04 b) ηc =0.040 c)
ηc =0.080 d) ηc =0.239 e) ηc =0.279 f) ηc =0.318
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Fig. S13 Probability density P(z) to find either a colloid (orange dashed
line) or a monomer (blue full line) at height z as a function of the reduced
height z/H0, H0 being the height at ηc =0, for σga2 = 0.08 at different
values of the colloid packing fraction a) ηc =2.94e-04 b) ηc =0.037 c)
ηc =0.074 d) ηc =0.221 e) ηc =0.258 f) ηc =0.294

ber of adsorption sites per adsorbed monomer γint = Mint/na
c, iv)

average number of contacts per adsorbed colloid Mbonds/na
c. We

report the results in Fig. S14, showing the case σg · a2 =0.032 in
panel a), σg ·a2 =0.048 in panel b), σg ·a2 =0.064 in panel c) and
σg ·a2 =0.08 in panel d).

By comparing the panels between themselves and with Fig. 5 of
the main panel, we can make a couple of additional observations.
First, the value of γ0 = γint(0) is not very sensitive on the grafting
density, as it increases by a factor 1.3 upon increasing σg by a
factor 2.5 (by roughly the same increase in εmc, the relative in-
crease is almost a factor of 2, see Fig. S14c and Fig. 5). However
it increases upon increasing σg, in agreement with the argument
in Section 3.1: from the microscopic perspective, a denser brush
will clearly have more monomers surrounding the adsorbed col-
loid. We also observe that the fraction of interacting monomers
Mint/M is quite insensitive on the grafting density. Instead, as also
observed before, at high values of ηc the fraction of adsorbed col-
loids decreases significantly more at lower values of ηc; however,

Fig. S14 Average fraction of adsorption sites Mint/M (orange crosses), av-
erage fraction of adsorbed colloids na

c/nc (green triangles), average num-
ber of adsorption sites per adsorbed monomer Mint/na

c (red stars), average
number of contacts per adsorbed colloid Mbonds/na

c (blue diamonds) as
a function of ηa

c for a) σga2 =0.032, b) σga2 =0.048 c) σga2 =0.064, d)
σga2 =0.08. The alternative axis reports the corresponding values of ηc.
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in all cases, na
c/nc = 1 at least below na∗

c , meaning that the colloids
will always be adsorbed by the brush.
Finally, we report the comparison between the scaling theory and
the numerical simulations in Figs. S15-S18; again we report the
different cases following the increase in σg ·a2.
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Fig. S15 Comparison between numerical results and theoretical predic-
tions for both H and γint as a function of ηa

c for σga2 =0.032. Lines and
symbols as in the main text.
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Fig. S16 Comparison between numerical results and theoretical predic-
tions for both H and γint as a function of ηa

c for σga2 =0.048. Lines and
symbols as in the main text.

The theory essentially captures both the adsorption process
(through γint) and the effect of the adsorption on the brush con-
formation (through H) for all four cases. Interestingly, the best
agreement is at σg ·a2 =0.08 and the comparison tends to be more
qualitative upon lowering the grafting density. This strengthens
the analogy between the rule of σg and εmc and suggest that, in
order to optimize adsorption, one has to take into account both
parameters.
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Fig. S17 Comparison between numerical results and theoretical predic-
tions for both H and γint as a function of ηa

c for σga2 =0.064. Lines and
symbols as in the main text.
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Fig. S18 Comparison between numerical results and theoretical predic-
tions for both H and γint as a function of ηa

c for σga2 =0.08. Lines and
symbols as in the main text.

Journal Name, [year], [vol.],1–7 | 7


	Bulk scaling of a single polymer
	Scaling regime of the reference homopolymeric brush
	Equivalent diblock copolymer picture of adsorption
	Coordination number of a single adsorbed colloid
	Estimation of the local coordination number
	Calculation of the exponent 
	On the fitting procedure used for Eq.(25) of the main text

	Additional comparison between scaling theory and simulation
	Comparison at fixed g a2=0.064
	Comparison at fixed mc=1.5 kB T


