Electronic SupplementaryInformation for

"Turn on" and pinhole-free ultrathin core-shell Au@SiO₂ nanoparticles-based metal-enhanced fluorescent chemodosimeter for Hg²⁺

Ying Cui^{ab#}&Shanji Fan^{c#}, Yunran Zhai^a, Yingjie Liu^c, Junhua Li^b, Jiawen Hu^a and Lijia Wang^{d*}

^aHunan Key Laboratory of Two-Dimensional Materials, Advanced Catalytic Engineering Research Center of the Ministry of Education, and College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

^bKey Laboratory of Functional Metal-Organic Compounds of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421001, PR China

^cDepartment of Thyroid Breast Surgery, The First Afffliated Hospital of University of South China, Hengyang, 421001, China.

1. Quantification the metal-enhanced fluorescence at the presence of Au@SiO2 NPs

To quantitatively estimate the fluorescence enhancement of the $Au@SiO_2$ NPs, their fluorescence enhancement factor (EF) is calculated using the following formula

$$\mathrm{EF} = \frac{F_{\mathrm{S}}/N_{\mathrm{S}}}{F_{\mathrm{O}}/N_{\mathrm{O}}}$$

Here, $F_{\rm S}$ and F_0 are the fluorescence intensities contributed by the fluorescence molecules adsorbed on Au@SiO₂ NPs ($N_{\rm S}$) and free molecules in solution (N_0), respectively. $N_{\rm A}$ (~5.94 × 10¹⁵ for Au@SiO₂ NPs) can be estimated by measuring the UV-Vis spectra for the fluorescence probe solution before and after their mobilization onto the Au@SiO₂ NPs (Fig. S1). N_0 (~1.3×10¹⁶)can be calculated by knowing the concentration of a bulk solution and its volume.

2. Supplementary Figures

Fig. S1 TEM images for the (a) 55 and (b) 80 nm Au NPs and (c and d) their corresponding $Au@SiO_2 NPs$ with an external 4-5 nm SiO₂ shell.

Fig. S2 UV-Vis spectra (a_1, b_1) , cyclic voltammograms (a_2, b_2) , and SERS spectra (a_3, b_3) of 55 nm Au NPs Au_{55 nm}@SiO₂, the SERS spectra were obtained for a single 10 s accumulation The characterizations for Au_{55 nm}@SiO₂ and Au_{80 nm}@SiO₂ NPs using UV-vis spectra, in 0.5 M H₂SO₄ solution, scan rate: 0.1 V/s., and.

Fig. S3 (A) The UV-vis spectra for the 0.5 μ M free fluorescence probe (a), Au_{55 nm}@SiO₂ NPs (b), Au_{80 nm}@SiO₂ NPs (c) and addition Hg²⁺ into free fluorescence probe (d), respectively. (B) The fluorescence spectra for free probe (a), fluorocore-labeled Au_{55 nm}@SiO₂ probe (b), Au_{80 nm}@SiO₂ probe (c) and the corresponding changes in fluorescence intensity after addition Hg²⁺ (d-f). The concentration of probe and Hg²⁺ are all 0.5 μ M.

Fig. S4. Reaction time profiles of probe and Au@SiO₂ probe (0.5 μ M) upon addition of 1 equiv Hg²⁺ in pH 7.4 PBS/EtOH (v/v, 7/3). Excitation at 560 nm.

Fig. S5. Fluorescence intensity changes after additions of probe and Au@SiO₂ probe (0.5 μ M) and Hg²⁺(1.0 equiv). The mixture were kept for 10 min at room temperature before the fluorescence intensity of the probe solution was measured. Excitation at 560 nm.

Fig. S6. UV-Vis spectra for the solution of the fluorescence probes(5 μ M) before (a) and after (b) their immobilization onto the Au@SiO₂ NPs. For the later case, the Au@SiO₂ NPs were removed from the solution by centrifugation after immobilization of the fluorescence probes.

Fig. S7. Fluorescence spectra for the fluorophore-labeled Au@SiO₂ (a); Fluorescence spectra of Fluorescence spectra(b); Fluorescence intensity changes after additions of 1.0 equiv of the mixing solution with other heavy metal ions (Co²⁺, Fe³⁺, Cd²⁺, Fe²⁺, K⁺, Cr²⁺, Cu²⁺, Pb²⁺, Mg²⁺, Ag⁺, Ba²⁺, Ni²⁺) to the solution of Au@SiO₂ probe (0.5 μ M) and Hg²⁺(1.0 equiv)(c).

Fig. S8. Cytotoxicity assay of probe and Au@SiO₂ probe with 1.8 equiv Hg^{2+} at different concentrations for HCT116 Colon cancer cells.