Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2024 ## **Supporting Information (SI)** ## Theoretical prediction of electronic properties and contact barriers in metal/semiconductor NbS2/Janus MoSSe van der Waals heterostructure P. H. Nha,¹ Chuong Q. Nguyen,² Nguyen N. Hieu,^{3,4} Huynh V. Phuc,⁵ and Cuong Q. Nguyen^{3,4,*} ¹Faculty of Electrical Engineering, Hanoi University of Industry, Hanoi 100000, Vietnam. ²Department of Materials Science and Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam ³Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam ⁴Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam ⁵Division of Theoretical Physics, Dong Thap University, Cao Lanh 870000, Vietnam *Corresponding authors: nguyenquangcuong3@duytan.edu.vn Fig. S1. Phonon dispersion curves of NbS₂/MoSSe heterostructure for the most energetically favorable stacking configuration. Fig. S2. Projected band structures of NbS₂/MoSSe heterostructure for the most energetically favorable stacking configuration (a) without (w/o) SOC and (b) with SOC effect. Fig. S3. The fluctuation in total energy as a function of time steps of the $NbS_2/MoSSe$ heterostructure for different stacking configurations. The insets represent the atomic structure of heterostructure after heating to 6 ps.