# **Supporting Information**

## **First-Principles Calculations of Inorganic Metallocene Nanowires**

Yangqi Ji,<sup>a</sup> Haifeng Lv,<sup>a\*</sup> Xiaojun Wu,<sup>a\*</sup>

<sup>a</sup> School of Chemistry and Materials Science, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China.

\* Corresponding authors: xjwu@ustc.edu.cn

#### **Table of Contents**

- Fig. S1: Phonon spectrums
- Fig. S2: Phonon density of states
- Fig. S3: Phonon spectrum of another structure
- Fig. S4: AIMD results
- Fig. S5: Total density of states
- Fig. S6: Density of states for d orbitals of metal
- Fig. S7: Band structures
- Fig. S8: Spin charge density
- Fig. S9: VBM/CBM decomposed charge density
- Fig. S10: Electronic configuration
- Fig. S11: Model of interchain coupling
- Table S1: Structural testing results
- Table S2: Structural information
- Table S3: The magnetic anisotropy energy results

## **Supporting Figures**



Fig. S1. The calculated phonon dispersion spectra for the lowest energy structures of (a)  $ScP_4$  (b)  $TiP_4$  (c)  $VP_4$  (d)  $CrP_4$  (e)  $MnP_4$  (f)  $FeP_4$  (g)  $CoP_4$  (h)  $NiP_4$  in either Q-type or A-type.



Fig. S2. The phonon density of states of (a)  $ScP_4$  (b)  $TiP_4$  (c)  $CrP_4$  (d)  $FeP_4$  in either Q-type or A-type.



Fig. S3. The calculated phonon dispersion spectra of (a)  $ScP_4$  in A-type (b)  $TiP_4$  in Q-type (c)  $CrP_4$  in A-type (d) FeP\_4 in A-type.



Fig. S4. The evolvement of total energy per atom ( $E_0$ , eV/atom) and total magnetic moments (mag,  $\mu$ B) along with time, and the structural snapshot of AIMD simulation for (a)ScP<sub>4</sub> (b)TiP<sub>4</sub> (c)CrP<sub>4</sub> (d)FeP<sub>4</sub>.



Fig. S5. The calculated total density of states for (a)ScP<sub>4</sub> (b)TiP<sub>4</sub> (c)CrP<sub>4</sub> (d)FeP<sub>4</sub>.



Fig. S6. The calculated local density of states projected on d orbitals of metal for (a)ScP<sub>4</sub> (b)TiP<sub>4</sub> (c)CrP<sub>4</sub> (d)FeP<sub>4</sub>.



Fig. S7. The electronic band structures for (a)  $ScP_4$  in A-type (b)  $TiP_4$  in Q-type.



Fig. S8. The spin charge density for (a)ScP<sub>4</sub> (b)TiP<sub>4</sub> (c)CrP<sub>4</sub> (d)FeP<sub>4</sub>. The yellow and cyan colours indicate the different spin directions of the electrons, respectively. The isosurface leve is 0.01 Bohr<sup>-3</sup>.



Fig. S9. The band decomposed charge density for (a) VBM at Z for ScP<sub>4</sub> (b) CBM at Z for ScP<sub>4</sub> (c) VBM at Z for TiP<sub>4</sub> (d) CBM at  $\Gamma$  for TiP<sub>4</sub> (e) VBM at  $\Gamma$  for FeP<sub>4</sub> (f) CBM at  $\Gamma$  for FeP<sub>4</sub>. The isosurface leve is 0.01 Bohr<sup>-3</sup>.



Fig. S10. The electronic configuration of metal atom in FeP<sub>4</sub> and CrP<sub>4</sub> nanowires.



Fig. S11. Structural modeling of  $CrP_4$  interchain coupling model of (a) Front view (b) Top view

### **Supporting Tables**

Table S1. PBE+U was used for structural testing, and the results of the AFM (NM for Atyped ScP<sub>4</sub>) and FM (NM for TiP<sub>4</sub>) energies regarding to the A-typed and Q-typed structures of MP<sub>4</sub>. The energies (eV) given in the table are the difference between the energy of each structure and the energy of the lowest energy structure.  $\Delta E$  (eV) is defined as the energy difference between the MP<sub>4</sub> nanowire (NW) in Q-type or A-type in the same magnetic ground state per unit cell.

|                  | A-typed AFM<br>MP <sub>4</sub> NW | A-typed FM<br>MP <sub>4</sub> NW | Q-typed AFM<br>MP <sub>4</sub> NW | Q-typed FM<br>MP <sub>4</sub> NW | ΔΕ    |
|------------------|-----------------------------------|----------------------------------|-----------------------------------|----------------------------------|-------|
| ScP <sub>4</sub> | 0.759                             | 0.634                            | 0                                 | 0.004                            | 0.759 |
| TiP <sub>4</sub> | 0                                 | 0.047                            | 0.378                             | 0.176                            | 0.378 |
| $VP_4$           | 0                                 | 0.531                            | 0.091                             | 0.674                            | /     |
| CrP <sub>4</sub> | 0.772                             | 0.196                            | 0.586                             | 0                                | 0.196 |
| MnP <sub>4</sub> | 0.594                             | 0.338                            | 0.641                             | 0                                | /     |
| FeP <sub>4</sub> | 0.496                             | 0.665                            | 0                                 | 0.140                            | 0.496 |
| CoP <sub>4</sub> | 0.084                             | 0                                | 0.445                             | 0.178                            | /     |
| NiP <sub>4</sub> | 0                                 | 0.014                            | 0.262                             | 0.364                            | /     |

|                  | Lattice(Å) | Symmetry Group |
|------------------|------------|----------------|
| ScP <sub>4</sub> | 8.70       | P4/m           |
| TiP <sub>4</sub> | 7.90       | P4/m           |
| CrP <sub>4</sub> | 7.82       | P4/mmm         |
| FeP <sub>4</sub> | 7.55       | P4/mmm         |

Table S2. Structural information of  $MP_4$  (M = Sc, Ti, Cr and Fe).

|                  | E <sub>001</sub> (eV) | E <sub>100</sub> (eV) | E100-001(µeV/atom) |
|------------------|-----------------------|-----------------------|--------------------|
| ScP <sub>4</sub> | -56.52223             | -56.52223             | 0.18               |
| TiP <sub>4</sub> | -56.77262             | -56.77265             | -13.58             |
| CrP <sub>4</sub> | -57.81177             | -57.81193             | -77.86             |
| FeP <sub>4</sub> | -55.04702             | -55.04637             | 326.18             |

Table S3. The energy per transition metal atom ( $\mu eV/atom$ ) relative to the total energy with magnetization direction parallel to easy axis.