Electronic Supplementary Information

One-tube B7-H3 detection based on isothermal exponential

amplification and dendritic hybridization chain reaction

Xiangyun Chen,^a Chun Xuan,^a Jingtao Lin,^a Zhongquan Pan, ^a Xiaoliang Wu, ^a Pin Wu ^a Zhenchang Liang, *^c Luxin Yu, *^b Cailing Qiu,*^a

a. Dalang Hospital of Dongguan, Dongguan 523770, China. E-mail: youling85@126.com

b. Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China. E-mail: yuluxin2006@163.com.

c. Zhongshan City Shiqisuhuazan Hospital, Zhongshan, 528400, China.

E-Mail: lzhchang206@sina.com.

Fax: +86 76983009824; Tel: +86 76983009824;

E-mail: youling85@126.com, <u>yuluxin2006@163.com</u>, lzhchang206@sina.com.

Stability of the one-tube B7-H3 assay

The protein-to-DNA signal transducer (anti-B7-H3 antibody conjugated DNA1/DNA3 duplex) and other reaction components were stored at 4 °C for a period from 0 day to 15 days.

Atomic force microscopy (AFM) imaging

Assembly products were diluted in 1× TAE/Mg2+ buffer and deposited onto freshly cleaved mica (Ted Pella, USA) for 3 min. Samples were then rinsed with deionized water and dried at room temperature. AFM imaging experiments were performed in the air in tapping mode on a Dimension 3100 AFM (Veeco, USA). Silicon probes FS-1500AuD (Santa Barbara.CA). The image background was flattened by Nanoscope IIIa software.

Fig. S1 The stability of the one-tube B7-H3 assay. The fluorescence response of the construction of protein-to-DNA signal transducer at different storage periods with various concentrations of B7-H3.

Fig. S2 Optimization of different lengths of the stem in DH2 and DH3.

Table S1 Oligonucleotide sequences	es of different lengths of the stem in DH2 a	and DH3
------------------------------------	--	---------

Oligonucleotid	Sequences (5' to 3')
е	
D-HCR-H2-12	TTT GAT <u>ACG GCT GTG T<mark>CG</mark> ACCATG <mark>CG</mark>A CAC AGC CGT</u>
D-HCR-H3-12	<u>CG</u> A CAC AGC CGT ATC AAA <u>CG</u> A CAC AGC CGT ATC AAA <u>GCT GTG</u>
	T <mark>CG</mark> ACG GCT GTG T <mark>CG</mark> CAT GGT
D-HCR-H2-13	TTT GAT <u>ACG GCT GTG T<mark>CG T</mark> ACCA TG <mark>A CG</mark>A CAC AGC CGT</u>
D-HCR-H3-13	<u>A CGA CAC AGC CGT</u> ATC AAA <u>A CGA CAC AGC</u> CGT ATC AAA <u>GCT</u>
	<u>GTG T<mark>CG T</mark> ACG GCT GTG T<mark>CG T</mark> CAT GGT</u>
D-HCR-H2-14	TTT GAT <u>ACG GCT GTG T<mark>CG TA</mark> ACCA TG <u>TA CG</u>A CAC AGC CGT</u>
D-HCR-H3-14	TA CGA CAC AGC CGT ATC AAA TA CGA CAC AGC CGT ATC AAA GCT

GTG TCG TA ACG GCT GTG TCG TA CAT GGT

- D-HCR-H2-15 TTT GAT ACG GCT GTG TCG TAG ACCA TG CTA CGA CAC AGC CGT
- D-HCR-H3-15 CTA CGA CAC AGC CGT ATC AAA CTA CGA CAC AGC CGT ATC AAA GCT GTG TCG TAG ACG GCT GTG TCG TAG CAT GGT
- D-HCR-H2-16 TTT GAT <u>ACG GCT GTG TCG TAGG</u> ACCA TG <u>CCTA CGA CAC AGC</u> <u>CGT</u>
- D-HCR-H3-16 CCTA CGA CAC AGC CGT ATC AAA CCTA CGA CAC AGC CGT ATC AAA GCT GTG TCG TAGG ACG GCT GTG TCG TAGG CAT GGT
- D-HCR-H2-17 TTT GAT <u>ACG GCT GTG TCG TAGGC</u> ACCA TG <u>GCCTA CGA CAC AGC</u> CGT
- D-HCR-H3-17 <u>GCCTA CGA CAC AGC CGT</u> ATC AAA <u>GCCTA CGA CAC AGC</u> CGT ATC AAA <u>GCT GTG TCG TAGGC ACG GCT GTG TCG TAGGC</u> CAT GGT

Table S2 Comparison of our approach with other protein assays.

Methods	Strategy		LOD	Assa	Linear	Ref	
					у	range	
					time		
					(h)		
Fluorescence	Dropcast S	Single Molec	ule	19	2	-	1
	Assays			aM			
Electrochemiluminescenc	Dual-Polar			0.43	2	1	2
e	Electrochemiluminescence from Au 25 Nanoclusters		pg		pg/m		
			mL ⁻¹		L - 1		
						ng/m	
						L	
Electrochemical ELISA	Protein	Biosensing	in	78	2	100	3
	Undiluted	Serum Using	gа	pg		pg/m	
	Polypyrrole-Based			mL ⁻¹		L-100	
	Platform					ng/m	

					L	
Electrochemical	peptide	inhibitor-based	0.03	2		4
	biosensing	platform	ng			
			mL⁻¹			
Lateral flow assay	protein-to-	-DNA	0.74	2	1 fM-	5
	transducer	r-based	fM		100	
	approache	S			nM	

Table S3 Spiking test in human serum and saliva samples.

Sample	Spiked	Found	Recovery	RSD
serum	100 ng /mL	106.9 ng /mL	106.9%	2.62%
serum	1 ng /mL	1.054 ng /mL	105.4%	4.64%
serum	10 pg /mL	9.057pg /mL	90.57%	8.20%
saliva	100 ng /mL	89.42ng /mL	89.42%	3.32%
saliva	1 ng /mL	1.096 ng /mL	109.6%	3.25%
saliva	10 pg /mL	11.22 pg /mL	112.2%	8.28%

All the data in the table represents the average of three measurements

 C. Wu, P.M. Garden, D.R. Walt, Ultrasensitive Detection of Attomolar Protein Concentrations by Dropcast Single Molecule Assays, Journal of the American Chemical Society, 142 (2020) 12314-12323.
 Y. Zhou, Y. Chai, R. Yuan, Highly Efficient Dual-Polar Electrochemiluminescence from Au(25) Nanoclusters: The Next Generation of Multibiomarker Detection in a Single Step, Analytical chemistry, 91 (2019) 14618-14623.

[3] S.K. Arya, P. Estrela, Electrochemical ELISA Protein Biosensing in Undiluted Serum Using a Polypyrrole-Based Platform, Sensors (Basel, Switzerland), 20 (2020).

[4] V. Vanova, K. Mitrevska, V. Milosavljevic, D. Hynek, L. Richtera, V. Adam, Peptide-based electrochemical biosensors utilized for protein detection, Biosensors & bioelectronics, 180 (2021) 113087.

[5] Z. Tang, W. Zhao, Y. Deng, Y. Sun, C. Qiu, B. Wu, J. Bao, Z. Chen and L. Yu, *Analyst*, 2022, 147, 1709-1715.