Supplementary material

Magnetic shear stress in the modified Plank's model Ca^{2+} dynamics in endothelial cells taking on account magnetic field influence on the chains of magnetic nanoparticles embedded in cell membrane.

The transformation from dimensional dynamic variables to dimensionless ones is given in Table S1.

Table S1. Dynamic variables in the Plank's model for calcium dynamics.

Dynamic variable	Dimensional	Dimensionless notation
	notation	
Concentrations of IP3 in the	Ĩ	$i' = \frac{l'}{K}$
cytosol		4
Free Ca ²⁺ in the cytosol	Са _{с, µМ}	$Ca_{c}^{'} = \frac{Ca_{c}}{K_{4}}$
Buffered Ca ²⁺ in the cytosol	Са _b , µМ	$Ca_{b}^{'} = \frac{Ca_{b}}{K_{4}}$
Ca ²⁺ in the internal stores	Са _{s, µМ}	$Ca'_{s} = \frac{Ca_{s}}{K_{4}}$
Sum of free Ca ²⁺ in the cytosol	$Ca_t = Ca_c + Ca_b,$	$Ca_t = \frac{Ca_t}{K_A}$
and	μM	4
buffered Ca ²⁺ in the cytosol		

Let's take on account

$$2Ca_{c} = Ca_{t} - B_{T} - \frac{k_{7}}{k_{6}} + \left(\left(Ca_{t} - B_{T} - \frac{k_{7}}{k_{6}} \right)^{2} + 4\frac{k_{7}}{k_{6}}Ca_{t} \right)^{1/2}$$
(S1)

1

Substituting (S1) into the set of equations (10)-(13) we obtain:

$$\frac{dl\,\ddot{\imath}}{dl\,t} = k_1 \frac{\phi}{K_c + \phi} \cdot \frac{Ca_c}{K_1 + Ca_c} - k_2 \ddot{\imath}$$
(S2)

$$\frac{dlCa_{t}}{dlt} = k_{3} \frac{Ca_{c}}{K_{CICR} + Ca_{c}} \left(\frac{l}{K_{2} + l}\right)^{3} Ca_{s} - k_{4} \left(\frac{Ca_{c}}{K_{3} + Ca_{c}}\right)^{2} + k_{5} Ca_{s}^{2} + k_{CCE} (Ca_{s,0} - Ca_{s}) (Ca_{ex} - Ca_{c}) + \frac{1}{1 + \alpha} - \frac{k_{8}}{K_{4} + Ca_{c}}$$
(53)

$$\frac{dlCa_{s}}{dlt} = -V_{r} \left(k_{3} \frac{Ca_{c}}{K_{CICR} + Ca_{c}} \left(\frac{l}{K_{2} + l} \right)^{3} Ca_{s} - k_{4} \left(\frac{Ca_{c}}{K_{3} + Ca_{c}} \right)^{2} + k_{5} Ca_{s}^{2} \right)$$
(S4)

The initial conditions are used for the equations (12)-(14):

$$i(0) = 0$$
 (S5)

$$Ca_{t}(0) = Ca_{0} \left(\frac{Ca_{0} + B_{T} + k_{7} / k_{6}}{Ca_{0} + k_{7} / k_{6}} \right)$$
(S6)

$$Ca_s(0) = Ca_{s,0} \tag{S7}$$

The non-dimensionless equations have the form after non-dimensionalisation (Table S1, Table S2):

$$\frac{dli}{dlt} = k_1 \frac{\phi}{K_c + \phi} \cdot \frac{Ca_c}{K_1 + Ca_c} - k_2 i$$
(S8)

$$\frac{dlCa_{t}^{'}}{dlt^{'}} = k_{3}^{'}\frac{Ca_{c}^{'}}{K_{CICR}^{'} + Ca_{c}^{'}} \left(\frac{i}{K_{2} + i}\right)^{3}Ca_{s}^{'} - k_{4}^{'} \left(\frac{Ca_{c}^{'}}{K_{3}^{'} + Ca_{c}^{'}}\right)^{2} + k_{5}^{'}Ca_{s}^{'2} + k_{CCE}^{'}(Ca_{s,0}^{'} - Ca_{s}^{'})(Ca_{ex}^{'} - Ca_{c}^{'}) + \frac{1}{1 + e_{s}^{'}} - \frac{k_{8}^{'}}{K_{4}^{'} + Ca_{c}^{'}}$$
(S9)

2

$$\frac{dlCa_{s}}{dlt} = -V_{r}\left(k_{3}\frac{Ca_{c}}{K_{CICR} + Ca_{c}}\left(\frac{i}{K_{2} + i}\right)^{3}Ca_{s} - k_{4}\left(\frac{Ca_{c}}{K_{3} + Ca_{c}}\right)^{2} + k_{5}Ca_{s}^{2}\right)$$
(S10)

$$W'(\tau') = \frac{f_e W_0 [\dot{\varepsilon} \tau' + \sqrt{16\delta^{2} + \dot{\varepsilon}^{2} \tau^{2}} - 4\delta']^2}{[\dot{\varepsilon} \tau' + \sqrt{16\delta^{2} + \dot{\varepsilon}^{2} \tau^{2}}]}.$$
(S11)

The results of numeric solving of equations (S8)-(S11) using Python programming language, numpy and scipy packages.

Table S2. Parameters in the Plank's model for calcium dynamics modified to take on account the WSS induced by magnetic field.

Parameter	Dimensional parameter	Relation	Dimension-	Dimension-
used in the	values for non-oscillatory regime	between	less	less
model for		dimensiona	parameter	parameter
calcium		l and	values	values
dynamics		dimension-	for non-	for
		less	oscillatory	oscillatory
		parameter	regime	regime
Maximum value	$G_0 = 30 Tm^{-1}$			
of spatial				
derivative of				
magnetic field				
flux density				
Magnetic field	$B=0.5\cdot10^{-4}T$			
flux density of				

the Earth				
Biogenic or	$r=100\cdot 10^{-9}m$			
nonbiogenic				
magnetic				
nanoparticle				
radius				
Magnetization	$M_s = 510 \cdot 10^3 Am^{-1}$			
of biogenic or				
nonbiogenic				
magnetic				
nanoparticle				
Frequency of	$\omega = 4 \cdot 10^{-4} s^{-1}$	$\omega' = \frac{\omega}{T}$	ω = 0.2	
external				
gradient				
magnetic field				
oscillation				
Amplitude of	$P_0 = 2.04 \ Pa$	$\tau_{magn} = \frac{P_0}{m^2}$	$\tau_{magn} = 18.9$	
magnetic WSS	$P_0 = \frac{4rM_sG_0}{2}$	ρU_0^2	for artery	
(WSS) induced	5		(Plank's	
by gradient			model)	
magnetic field			$\tau_{magn} = 906.7$	
			for capillary	
Amplitude of	$P_0 = 1.3 Pa$	$\tau_{magn} = \frac{P_0}{r^2}$	$\tau_{magn} = 12.3$	
magnetic WSS	$P_0 = \frac{\pi}{6N} M_S B \sin \theta \sin \gamma$	ρU_0^2	for artery	

(WSS) induced			(Plank's	
by uniform			model)	
magnetic field			$\tau_{magn} = 593$	
			for capillary	
Angle between	θ			
the normal to				
the cell				
membrane and				
magnetic field				
Angle between	γ			
in-plane				
component of				
magnetic field				
and				
magnetization				
of the chain of				
magnetic				
nanoparticles				
Concentration	φ [1]	$\phi' = \frac{\phi}{\phi_2}$	$\phi' = 0.9$ [1]	
of ATP at the		Ψ0		
cell surface				
Reference ATP	$\phi_0 = 0.1 \mu M$ [1]			
concentration				
IP3 production		$k_1' = \frac{k_1 T}{K_4}$	$k_1 = 8.53$ [1]	$k_1 = 35.8$ [1]

rate	$k_1 = 5.46 \cdot 10^{-3} \mu M s^{-1} $ [1]			
IP3 decay rate	$k_2 = 0.2 \ s^{-1}$ [1]	$k_2 = k_2 T$	$k_2' = 100$	
			[1]	
Ca ²⁺ release rate	$k_3 = 6.64 s^{-1}$ [1]	$k'_3 = k_3 T$	$k_3 = 3320$ [1	
]	
Ca ²⁺	$k_4 = 5 \mu M s^{-1}$ [1]	$k_1' = \frac{k_4 T}{\kappa}$	$k_4 = 7810$ [1	$k_4 = 7.81 \cdot 10^4$
resequestration		м ₄]	[1]
rate				
Ca ²⁺ leak rate	$k_5 = 10^{-7} \mu M^{-1} s^{-1} $ [1]	$k_5 = k_5 T K_4$	$k_5 = 1.6 \cdot 10^{-5}$	
	A			
Ca ²⁺ buffering	$k_6 = 100 \ \mu M^{-1} s^{-1} \ [1]$			
rate				
Ca ²⁺ debuffering	$k_7 = 300 \ s^{-1}$ [1]			
rate				
Ratio of Ca ²⁺		$k_{b}' = \frac{k_{7}T}{k_{7}K}$	$k_b = 9.38$ [1]	
buffering rates		$\kappa_6 \kappa_4$		
Ca ²⁺ efflux rate	$k_8 = 24.7 \ \mu M s^{-1}$ [1]	$k_8' = \frac{k_8 T}{K_4}$	$k_8 = 38600$ [
		4	1]	
Max. WSS-	$q_{max} = 17.6 \ \mu M s^{-1}$ [1]	$q_{max} = \frac{q_{max}T}{V}$	$q_{max} =$	
induced		Γ ₄	27500 [1]	
Ca ²⁺ influx rate				
CCE rate	$k_{CCE} = 8 \cdot 10^{-7} \ \mu M^{-1} s^{-1} \ [1]$	$k_{CCE} = k_{CCE}T$	$k_{CCE} = 1.28 \cdot 10$	

Resting	$Ca_0 = 0.1 \ \mu M$ [1]	$Ca' - Ca_0$	$Ca_0 = 0.313$	
cytosolic Ca ²⁺		$Cu_0 - \frac{K_4}{K_4}$	1]	
concentration				
Resting stored	$Ca_{s,0} = 2828 \ \mu M$ [1]	$Ca_{s,0} = \frac{Ca_{s,0}}{K}$	$Ca_{s,0} = 8840$	
Ca ²⁺		κ ₄	[1]	
concentration				
External Ca ²⁺	$Ca_{ex} = 1500 \ \mu M$ [1]	$Ca_{ex} = \frac{Ca_{ex}}{K}$	$Ca_{ex} = 4690$	
concentration		4	[1]	
Concentration	$B_T = 120 \ \mu M$ [1]	$B_T' = \frac{B_T}{K}$	$B_T = 375$ [1]	
of Ca ²⁺		к ₄		
buffering sites				
Michaelis-	$K_{CICR} = 0 \ \mu M [1]$	$K_{CICR} = \frac{K_{CICR}}{K}$	0 [1]	
Menten		<i>N</i> ₄		
constants				
Michaelis-	$K_1 = 0 \ \mu M \ [1]$	$K'_{1} = \frac{K_{1}}{K_{1}}$	$K_{1} = 0$ [1]	$K_{1} = 1$ [1]
Menten				
constants				
Michaelis-	$K_2 = 0.2 \ \mu M$ [1]	$K'_{2} = \frac{K_{2}}{K_{2}}$	$K_2 = 0.625$ [
Menten		4	1]	
constants				
Michaelis-	$K_3 = 0.15 \ \mu M$ [1]	$K'_3 = \frac{K_3}{K_4}$	$K_{3} = 0_{.469}$	
Menten		4	[1]	
constants				
Michaelis-	$K_4 = 0.32 \ \mu M$ [1]			

Menten				
constants				
Michaelis-	$K_c = 0.026 \ \mu M$ [1]	$K_c = \frac{K_c}{4}$	$K_{c} = 0.26$ [1]	
Menten		ϕ_0		
constants				
Membrane	$\delta = 10^{-5} kg \cdot s^{-2} [1]$	$\delta' = \frac{\delta}{2U^2 I}$	$\delta' = 2.63$ for	
shear		$\rho \sigma_0 \iota$	artery	
modulus			(Plank's	
			model) [1]	
			$\delta^{'} = 126$ for	
			capillary	
Density of water	$ ho = 1000 \ kgm^{-3}$ [1]			
Reference	$U_0 = 1.04 \cdot 10^{-2} m s^{-1}$ [1] for artery			
velocity	(Plank's model)			
	$U_0 = 0.2 \ ms^{-1}$ typical for artery			
	$U_0 = 1.5 \cdot 10^{-3} ms^{-1}$ typical for			
	capillary			
Cell length in	$l = 3.5 \cdot 10^{-5} m$ [1]			
direction of flow				
Plasma			ε = 0.1 [1]	
membrane load				
fraction				
Plasma			$f'_e = 0.0134$	
membrane			[1]	

energy gating				
fraction				
Ratio of			$V'_r = 3.5$ [1]	
cytosolic and ER				
volumes				
Strain energy		$W_0' = \frac{\rho U_0^2 l}{\rho U_0 N}$	$W_0 = 111$ [1]	
density constant		⁸ 8 <i>K</i> I _e N	for artery	
			$W_{0}^{'} = 2.3$ for	
			capillary	
Temperature	$T_e = 310 K$			
Ca ²⁺ channel	$N_0 = 10^{12} m^{-2} [1]$			
area density				
Boltzmann	$k = 1.3807 \cdot 10^{-23} kg \cdot m^2 s^{-2} K^{-1}$			
constant				
time	t,s	$t' = \frac{t}{T}$		
Reference	$T = 500 \ s$			
timescale				
Characteristic	$\tau_m = 1 \ kg \cdot m^{-1} s^{-2}$ [1]		$\tau_m = 9.22$ [1]	
WSS for ATP				
production				
WSS	au = 1 Pa for artery	$\tau' = \frac{\tau}{\alpha U^2}$	$\tau = 9.2$ for	
	au = 0.1 Pa [84] for capillary	μυ ₀ [1]	artery	
			$\tau = 44$ for	
L	1	1		

	capillary	

First, we reproduce the results of Plank's model for artery without magnetic field influence in non-oscillatory regime. Then we calculate the influence of oscillating magnetic shear stress. The set of dimensionless parameters for 'non-oscillatory regime', 'artery' is given in Table S2.

Fig. S1 Range of oscillating magnetic field influence $\binom{G_0 \in [0,30]}{m}$ on strain energy density in the plasma membrane and Ca²⁺ channel opening for artery in Plank's model [1].

Code availability

The codes used in this study are available at www.... as .zip file containing the python project MagniCa.

Additional information

Supplementary information

The online version contains Supplementary Material available at www.....

Fig. S2. Range of oscillating magnetic field influence $\binom{G_0 \in [0,150]\frac{T}{m}}{m}$ on strain energy density in the plasma membrane and Ca²⁺ channel opening for artery in Plank's model [1].

Fig. S3. Colormaps visualizing magnetic field effects on dynamics of intracellular free Ca²⁺ concentration for artery in non-oscillatory regime (Table S2).

WSSs created by magnetic field below "magnetic field saturation" threshold τ_{magn} ($G_0 < 80$ T/m in the case of gradient magnetic field) are much less than the normal blood pressure (1840 Pa in artery, upper limit of normal is 2660 Pa,² 4655 Pa in arteriolar;³ capillary pressure differs markedly among tissues in the range of 665 Pa – 6650 Pa). Therefore, the direction of the magnetic force in plane of membrane is very important for ion channel gating. The out of plane magnetic force doesn't gate the ion channels as well as the out of plane force exerted on membrane by blood pressure itself doesn't gate the mechanosensitive ion channel.

Fig. S4. Roadmap of expected magnetic field effects. Range A: Magnetic field (MF) πM_S has no significant effect on ion channel gating because magnetic WSS is much less than WSS saturating Ca²⁺ ion channel. Range B: Uniform rotating MF gates ion channels. Gradient MF has no effect on ion channel gating for L_B greater than the length of chain of magnetic nanoparticles where L_B is the characteristic scale of magnetic field gradient. Range C: Gradient MF gates ion channels. Uniform rotating MF has no effect on ion channel gating because magnetic field is equal to saturation magnetic field for magnetic nanoparticle chain and the chain is magnetized parallel to the external magnetic field $B \approx 100 - 120 \, mT$. Range D: WSS of gradient magnetic field $B_{cr} \approx L_B G_s$, $G_s \approx 80 \, T/m$ saturates Ca²⁺ ion channel. Range F: Magnetic WSS is high

resulting in membrane rupture $G_{cr} = \frac{3P_{cr}}{4rM_s} \approx 4 \cdot 10^5$ T/m, $B_{cr} = G_{cr}L_B$. Range G: No magnetic field effects on ion channel gating due to detachment of magnetic nanoparticles from the membrane.

References

1 Plank M.J., Wall D. J. N., and David T, Atherosclerosis and Calcium Signalling in Endothelial Cells, Prog. Biophys. Mol. Biol. 2006, **91**, 287. 2 L. Xue, Y. Yang, B. Sun, B. Liu, Q. Zeng and C. Xiong, Mildly Elevated Pulmonary Arterial Pressure Is Associated With a High Risk of Progression to Pulmonary Hypertension and Increased Mortality: A Systematic Review and Meta-Analysis, *J. Am. Heart Assoc.*, 2021, **10**, e018374.

3 M. J. Davis, M. A. Hill, and L. Kuo, Local Regulation of Microvascular Perfusion, in Microcirculation, Elsevier, 2008, , pp. 161–284.