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1 Including the new bounds into SIRT
In SI Figure 1 image reconstructions of the simultaneous itera-
tive reconstruction technique (SIRT)1,2 are evaluated, comparing
SIRT without bounds, SIRT with non-negativity constraints and
SIRT with both non-negativity constraints and the newly devel-
oped hard upper bounds of this work. The non-negativity con-
straints are given as

f j ≥ 0 ∀1≤ j ≤ n, (1)

the hard upper bounds as

f j ≤min
i∈A j

pi

Ri j
∀1≤ j ≤ n. (2)

First, we compare the reconstructions from SIRT without any
bounds in SI Figures 1a-1d to the reconstructions from SIRT in-
cluding the non-negativity constraints in SI Figures 1e-1h. Here,
the most streaking artifacts outside the samples are eliminated
and the sample edges are much more distinct when including the
non-negativity. This is also reflected in the relative mean error
(RME)/raw data coverage (RDC) values, where SIRT with in-
cluded non-negativity bounds performs better than pure SIRT in
all cases except for the zeolite reconstruction with 180 projec-
tion angles in SI Figures 1c and 1g. In two out of four cases, the
bounds could decrease the RME/RDC value by more than 50%.
When additionally including the hard upper bounds in SI Fig-
ures 1i-1l, the program reaches lower RME/RDC values in com-
parison to non-negative SIRT in three out of four cases, being
slightly worse for the Cu lattice reconstruction in SI Figure 1l.
However, the improvements are not of the same magnitude. The
RDC value for the zeolite with 180 projection angles, although
better than SIRT with only non-negativity bounds, is still higher
than in the reconstruction from pure SIRT.
Visually compared, including the upper bounds into the already
existing non-negative SIRT does not induce much improvement.
The sample edges seem a little sharper, see, e.g., the edge on the
left side of the zeolite in SI Figure 1j compared to SI Figure 1f.
Furthermore, a few streaking artifacts outside of the Cu lattice
could be eliminated in SI Figure 1l. On the inner part of the sam-
ples the new bounds seem to have no notable impact.

2 Varying the TVR-DART parameter λTV R

In SI Figure 2, the total variation regularized discrete algebraic
reconstruction technique (TVR-DART)3 is evaluated on the
zeolite image reconstruction for different weighting parameters
λTV R. One can see that for 10 ≤ λTV R ≤ 1000 (SI Figures 2a-2c)
the algorithm returns a visually bad reconstruction with strongly
varying material density. In these cases, the algorithm does not
converge to a stopping criterion in the given 250 iterations. Note
that the visual improvement gained by increasing the number
of iterations is negligibly small. When increasing λTV R to 1150,
the algorithm suddenly converges. The visual improvement in
reconstructions from λTV R = 1000 to λTV R = 1150 (SI Figure 2c
to SI Figure 2d) is immense, in the latter, the material seems
to have the desired homogeneous density. Increasing λTV R

further up to 10000 does not change the conversion rate and

also the visual results do not differ by much, compare e.g. SI
Figures 2d and 2f. Thus, there appears to be a specific turning
point in parameter λTV R for TVR-DART, that may improve its
performance drastically. Contrary to this, the RDC values are
monotonically increasing in the reconstructions with increasing
λTV R in SI Figure 2, even though the reconstructions with larger
λTV R are visually by far the better reconstructions. This supposed
contradiction is further investigated in SI Figure 3 by compar-
ing the image reconstruction of a simulated sample to its original.

In SI Figure 3a, with a smaller parameter λTV R = 10, the sam-
ple interior exhibits random black spots, called pepper-noise. The
homogeneity over the sample is therefore disturbed, and also
the edges are very unclear. The reconstruction reaches a rela-
tive mean error of 0.0472. When increasing the parameter to
λTV R = 500 in SI Figure 3c, the pepper-noise vanishes and the
edges are carved out a little better. However, the relative mean
error of this reconstruction is 0.1115. Even though it is the visually
better reconstruction, the error is more than twice as high. Sub-
tracting from both reconstructions the original simulated sample
pixel by pixel, SI Figures 3b and 3d emerge. For the smaller pa-
rameter, the empty background outside the sample still contains
a lot of artifacts that vanish for the larger parameter. Inside the
sample in SI Figure 3b, the pepper noise and some small den-
sity deviations become visible. Inside the sample in SI Figure 3d,
these deviations appear larger, and especially the edges of the
sample exhibit sharp deviations against the original. Looking at
the density values of the solution, it seems the larger penalization
parameter leads to a lower material density estimation variable
ρ2 (G = 2) (see TVR-DART description) than in the smaller penal-
ization parameter case. This means the overall image gray values
are pressed down by the penalization. This effect can be seen by
the overall darker gray values inside the sample in SI Figure 3d
compared to SI Figure 3b. This is causing a higher relative mean
error. When looking at the difference of the reconstruction from
CSHM to the original in SI Figure 3f, one can see that the homo-
geneity of the sample is much better than in SI Figure 3d, only
near the edges of the sample the CSHM reconstruction deviates
from the original.

3 Local thickness maps and pore size distri-
butions

SI Figure 4 shows the calculated local thickness map (LTM) and
pore size distribution (PSD) of the SIRT reconstruction with posi-
tivity constraint and 180 projections of the porous zeolite particle
from Figure 4b. We use this pore size distribution as ’ground truth’
for the comparison of the following LTMs and PSDs and will refer
to it as ’SIRT 180’.
In SI Figure 5, the PSD of CSHM (20 projections) covers all main
peaks as the PSD of SIRT 180, but with a systematic underesti-
mation of 10-20 nm for pores larger than 100 nm, whereas pores
< 100 nm are represented very well. In contrast, the other tech-
niques cover larger pores up to 275 nm, but partly fail in the
detection of other main peaks compared to SIRT 180. The under-
estimation in the CSHM PSD can be explained by some falsely re-
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constructed material of lower intensity adjacent to the pore walls,
which is assigned to material instead of pore by the applied Otsu
thresholding method. This erroneously reconstructed material is
also visible in the other reconstructed slices, but rather assigned
to pore space when thresholding. As already mentioned in the
main manuscript, the soft upper bounds of CSHM penalize bright
spots that show bigger densities than the main material density
and push the exceeding material to other pixels. This explains the
additional intensities in the inside of pores for CSHM compared,
e.g., to CS. By using machine learning segmentation methods, this
discrepancy could easily be taken care of, since the main intensity
of the zeolite material is clearly discernible in CSHM.
Similarly to the results using 20 projections, the PSD in SI Fig-
ure 6 of CSHM using 30 projections covers all main peaks as SIRT
180, but again with a systematic underestimation (even though
reduced compared to 20 projections) for pores larger than 100
nm, whereas pores < 100 nm are covered very well. In contrast,
the other techniques again cover larger pores up to 275 nm, but
partly fail in the detection of other main peaks compared to SIRT
180. As expected, the local thickness maps of all reconstructions
look more similar to SIRT 180 when reconstructed with 30 pro-
jections compared to those with only 20 projections.
The LTM of the CSHM reconstruction including a missing wedge
in SI Figure 7 shows by far the least merging of pores compared to
all other methods. This corresponds to less and more pronounced
peaks in the respective pore size distribution of CSHM, even
though the general pore size underestimation for pores larger
than 100 nm is also present similar to the reconstructions without
missing wedge. However, the pores at ~140 nm and ~170 nm
for CSHM are in a better agreement with SIRT 180 compared to
the other techniques.
When comparing the different SIRT reconstructions in SI Figure 8,
then it is apparent that SIRT without bounds and 20 projections
exhibits the worst artifacts and the pores are not well recon-
structed, which is further reflected in the LTM and PSD. In con-
trast, SIRT non-negative and bounded using 20 projections lead
to very similarly looking results for both LTMs and PSDs, and
are already quite close to SIRT 180, especially when compared to
SIRT without bounds. All three SIRT reconstructions using 180
projections (without bounds, bounded and non-negative) lead to
very similar results, except for a slight shift to a lower value for
the PSD peak at ~175 nm of the reconstruction without bounds.
The PSDs of TVR-DART λTV R = 10 and λTV R = 1000 in SI
Figure 9 exhibit a larger fraction and broader distribution of
smaller pores below 150 nm compared to the reconstructions
using higher λTV R. However, especially the peak at ~220 nm
matches the SIRT 180 PSD better than the TVR-DART PSDs with
larger λTV R values. When comparing the local thickness maps, it
becomes apparent that lower λTV R values (especially for λTV R =
10) lead to locally wrong pore reconstruction and recognition in
the respective LTM, especially on the outside surface of the parti-
cle.

4 Animated videos of the tilt series
SI Video 1 is showing an animation of the full tilt series of projec-
tions of the experimental electron tomography data of a macrop-

orous zeolite particle on the plateau of a tomography tip as shown
in Figure 2 of the main manuscript.
SI Video 2 is showing an animation of the full tilt series of projec-
tions of the experimental absorption-contrast nano-CT data set of
a copper microlattice structure as shown in Figure 3 of the main
manuscript.
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(a) SIRT, 45 angles, RME: 0.2454 (b) SIRT, 20 angles, RDC: 18.0740 (c) SIRT, 180 angles, RDC: 4.3590 (d) SIRT, 40 angles, RDC: 32.4345

(e) SIRT non-negative, 45 angles,

RME: 0.1190

(f) SIRT non-negative, 20 angles,

RDC: 8.3933

(g) SIRT non-negative, 180 angles,

RDC: 6.3723

(h) SIRT non-negative, 40 angles,

RDC: 32.0757

(i) SIRT bounded, 45 angles, RME:

0.1165

(j) SIRT bounded, 20 angles, RDC:

7.5220

(k) SIRT bounded, 180 angles, RDC:

5.9427

(l) SIRT bounded, 40 angles, RDC:

32.1840

SI Figure 1 Comparison of SIRT without bounds (a)-(d) to SIRT with non-negativity constraints (called SIRT non-negative) (e)-(h) and SIRT with
non-negativity and hard upper bound constraints, (in the following called SIRT bounded) (i)-(l)
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(a) λTV R = 10, RDC: 11.3882 (b) λTV R = 100, RDC: 11.4662

(c) λTV R = 1000, RDC: 12.6422 (d) λTV R = 1150, RDC: 13.2136

(e) λTV R = 5000, RDC: 19.1119 (f) λTV R = 10000, RDC: 19.2447

SI Figure 2 TVR-DART comparison reconstructions with 20 projection angles and 5122 pixels for different parameters λTV R
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(a) TVR-DART, λTV R = 10, RME: 0.0472 (b) TVR-DART: Difference to original for λTV R = 10

(c) TVR-DART, λTV R = 500, RME: 0.1115 (d) TVR-DART: Difference to original for λTV R = 500

(e) CSHM, RME: 0.0223 (f) CSHM: Difference to original

SI Figure 3 Image reconstructions with 10 projection angles and 5122 pixels on a simulated sample, and their pixel by pixel differences to the original.
Compared are TVR-DART with λTV R ∈ {10,500} and CSHM with λCS = 20000.
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SI Figure 4 (top left) SIRT reconstruction with positivity constraint and 180 projections of the porous zeolite particle from Figure 4b, (bottom left)
its corresponding local thickness map, and (right) pore size distribution.

SI Figure 5 (top row) Different reconstructed slices of the porous zeolite particle using 20 projections from Figure 7, (middle row) their corresponding
local thickness maps, and (bottom) pore size distributions.
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SI Figure 6 (top row) Different reconstructed slices of the porous zeolite particle using 30 projections from Figure 8, (middle row) their corresponding
local thickness maps, and (bottom) pore size distributions.
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SI Figure 7 (top row) Different reconstructed slices of the porous zeolite particle with missing wedge from Figure 10e-h, (middle row) their corresponding
local thickness maps, and (bottom) pore size distributions.
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SI Figure 8 Different SIRT reconstructions (20 and 180 projections, each without bounds, bounded and non-negative) of the porous zeolite particle
from SI Figure 1, their corresponding local thickness maps, and pore size distributions.
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SI Figure 9 TVR-DART reconstructions for different parameters λTV R and CSHM slice (20 projections) of the porous zeolite particle from SI Figure 2,
their corresponding local thickness maps, and pore size distributions.

11


	Including the new bounds into SIRT
	Varying the TVR-DART parameter TVR
	Local thickness maps and pore size distributions
	Animated videos of the tilt series

