
Supporting Information : Ultrafast and Accurate Prediction of Polycrystalline
Hafnium Oxide Phase-Field Ferroelectric Hysteresis using Graph Neural

Network
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1. Polycrystalline structures generated by Voronoi tesselation
Figure S.1 showcases examples of polycrystalline structures generated through Voronoi tessellation. These structures
exhibit a mix of columnar and equiaxed grains, the arrangement of which depends on the grain sizes. We systematically
varied the grain diameter within the range of 7.5 to 20 nm, resulting in structures containing between 15 to 150 grains each.

Figure S.1. Voronoi polycrystalline structures of the generated dataset. Voronoi structures of different grain diameters ranging from
7.5 to 20 nm. The corresponding structures contain 21 (a), 37 (b), 29 (c), 74 (d), 134 (e) and 58 (f) ferroeelectric grains. Grains are
colored arbitrarily.
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2. Phase-field modeling of polycrystalline hafnium oxide
The phase-field simulations carried out in this work were conducted on a discretized grid with dimensions Nx ×Ny ×Nz ,
featuring a uniform grid spacing of ∆x = ∆y = ∆z = 1 nm. The dynamic evolution of the spontaneous polarization
P (r, t) within the microstructure is governed by the time-dependent Landau-Ginzburg (TDGL) equation:

∂Pi(r, t)

∂t
= −L0

δψ

δPi(r, t)
, (i = 1, 2, 3) (1)

where L0 represents the kinetic coefficient, and ψ denotes the total free energy, which includes the different energetic
contributions, as outlined in the manuscript:

ψ =

∫ ∫ ∫
V

(ψbulk + ψgrad + ψelec + ψelas)δV (2)

In this investigation, polycrystalline structures were synthesized via Voronoi tessellation, comprising a mix of columnar and
equiaxed grains. For all polycrystalline configurations, a grain boundary thickness of 1.2 nm was employed, aligning with
the typical order of magnitude observed in experimental setups (1). An exemplary polycrystalline structure from the dataset
is showcased in Figure S.2, representing a system of dimensions Nx ×Ny ×Nz = 64× 64× 10. To facilitate visualization,
a structure with relatively large grains, constituting approximately 10 grains in total, was deliberately selected. The internal
grain and grain boundary architectures are elucidated through 2D cross-sectional analyses conducted at y0 = 25 (Figure
S.2a), x0 = 50 (Figure S.2b), and z0 = 5 (Figure S.2c). Furthermore, a comprehensive 3D representation of the structure
is provided in Figure S.2d.

To modify the orientations of ferroelectric grains within the structure, each grain underwent a random assignment of two
angles (θG1 , θ

G
2 ) to define the orientation of its polarization axis. This transformation involved an initial rotation R̂y(θ

G
1 ) by

θG1 around the y-axis, followed by a subsequent rotation R̂z(θ
G
2 ) by θG2 around the z-axis. The resulting rotation matrix

R̂ = R̂z(θ
G
2 )× R̂y(θ

G
1 ) was then utilized to calculate the free energy within the local crystalline system.

R̂ =

cos(θG2 ) cos(θG1 ) − sin(θG2 ) cos(θG2 ) sin(θ
G
1 )

sin(θG2 ) cos(θ
G
1 ) cos(θG2 ) sin(θG2 ) sin(θ

G
1 )

− sin(θG1 ) 0 cos(θG1 )


In this system, any vector rL = (xL, yL, zL) can be obtained according to the grain’s orientation, from the relation
rL = R̂× r where r = (x, y, z) is the original vector in the global system.

Incorporating the influence of grain boundaries into the simulation, the ferroelectric polarization within these boundaries
was prescribed as zero, consistent with established studies on polycrystalline ferroelectrics (2). The polarization state within
the grain boundaries is explicitly defined by the expression:

P (r = rGB, t) = 0 (3)

Here, r = rGB denotes the spatial coordinates corresponding to the locations of the grain boundaries within the polycrys-
talline system. Consequently, substantial depolarizing charges arise at the grain boundaries, manifesting as ρ(r) = −∇·P (r).
This phenomenon induces a consequential depolarizing field during the resolution of the electrostatic equilibrium, signifi-
cantly enhancing the electrostatic coupling between ferroelectric grains within polycrystalline thin films. While our chosen
approach involves modeling grain boundaries as areas characterized by zero ferroelectric polarization, it is essential to
acknowledge that alternative methodologies for depicting these boundaries have been suggested in the existing literature (3).

In the absence of specific data on the properties of grain boundaries in HZO, we opted to assign the permittivity and elastic
parameters the same values as those attributed to the grains. A potential extension for handling materials with varying grain
boundary properties could involve modifying the resolution approach for electrostatic and mechanical equilibrium equations
to incorporate variable coefficients (4).

To illustrate the modeling of the ferroelectric structure in the presence of grains, we present in Figure S.3 the domain
structure resulting from a simulation of domain formation. In this simulation, polarization was randomly initialized at each
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Figure S.2. Illustration of a 3D polycrystalline structure achieved through Voronoi tessellation. Detailed 2D cross-sectional insights
of the grain distribution are given at specific planes: (a) y0 = 25, (b) x0 = 50, and (c) z0 = 5. Additionally, (d) provides a global 3D
depiction of the polycrystalline system. Grains are arbitrarily colored for clarity in visualization.

grid point within the films, and the domains were allowed to evolve freely until reaching equilibrium. Notably, no voltages
were applied during this process. Detailed 2D cross-sections of the ferroelectric polarization are presented at specific planes:
y0 = 25 (Figure S.3a), x0 = 50 (Figure S.3b), and z0 = 5 (Figure S.3c). In all these 2D cross-sections, the colorbar
corresponds to the out-of-plane component Pz value, while the 2D arrows provide insights into the polarization orientation
within each grain. A 3D representation illustrating the magnitude of the out-of-plane polarization is also presented in
Figure S.3d. Furthermore, a 3D representation of the polarization vector is provided in Figure S.4, highlighting distinct
domains within each grain along with the polarization orientation in the polycrystalline arrangement. Those views reveal the
organization of polarization into multiple domains within each grain, separated by domain walls. The orientation of these
domains within each grain is contingent upon the crystalline orientation of the grain. Additionally, at each grain boundary,
the polarization is observed to be fixed at 0.

Furthermore, the dynamic evolution of the internal domain structure during a typical ferroelectric hysteresis is depicted
in Figure S.5. The representation of the domain structure is provided through 2D cross-sections in the plane x0 = 50,
at various points along the Pz(E) curves in Figure S.5a-d. This visualization elucidates the switching process occurring
within each grain and accentuates the global electrical coupling between ferroelectric grains. Notably, depending on the
grain orientation, the polarization tends to switch at different moments, contingent on its interaction with the vertically
applied electric field.
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Figure S.3. Illustration of the 3D Ferroelectric Domain State in a Polycrystalline Structure. Detailed 2D cross-sectional insights into
the ferroelectric polarization are presented at specific planes: (a) y0 = 25, (b) x0 = 50, and (c) z0 = 5. The colorbar represents the
out-of-plane polarization Pz values, while the 2D arrows denote the polarization orientation within each cross-section. (d) A 3D depiction
of the domain state, emphasizing the intensity of Pz .

Figure S.4. Illustration of the 3D Ferroelectric Domain State in a Polycrystalline Structure. Comprehensive 3D visualization of
the polarization domain state. The colorbar corresponds to the out-of-plane polarization Pz values, while the 3D arrows indicate the
polarization orientation within each ferroelectric grain.
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Figure S.5. Illustration of the Domain State Evolution During a Ferroelectric Hysteresis. Pz(E) curve obtained through phase-field
simulations depicting the electrical hysteresis over a 10-nm-thick HZO thin film. (a-d) 2D cross-sections illustrating the evolution of the
polarization state across the hysteresis in the plane x0 = 50. The colorbar represents the intensity of the Pz component, while the 2D
arrows depict the ferroelectric polarization vectors at each grid point.
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Theoritical range of remanent polarization and coercive field covered by the Landau coefficients
in the generated dataset
Figure S.6 represents the theoretical curve characterizing the hystereses according to Landau-Ginzburg theory, as represented
in other phase-field works(5). For 1000 sets of Landau coefficients from the dataset, the theoretical evolution of the
spontaneous polarization with the electric field,

E = αP + βP 3 + δP 5 (4)

was plotted for electric fields varying from -4 to 4 MV/cm. We can observe a wide diversity of remanent polarizations,
saturation polarization, coercive field, and hystereses shapes. The target values of remanent polarization 0.15 C/m2 and
coercive field 1 MV/cm we find in our experimental measurements are well covered. Thus, the GNN could be capable of
handling the range of experimental data in a future perspective for calibrating the Landau coefficient.

Figure S.6. Spontaneous polarization P versus electric field E for 1000 sets of Landau coefficients from the dataset. Theoretical
relation between P and E from the Landau-Ginzburg theory. The sets of Landau coefficients taken in this study cover a broad range of
remanent polarization and coercive fields around the target values of 15 C/m2 and 1 MV/cm.
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3. Diversity of the ferroelectric hystereses in the generated dataset
Figure S.7 portrays the diversity of ferroelectric hysteresis observed in this study. Diverse shapes, polariztion saturation
levels, remanent polarization values, and coercive fields are observed in the hysteresis curves. This variety can be attributed
to the wide range of Landau coefficients and polycrystalline structures explored in the study, emphasizing their significant
roles in shaping the hysteresis diversity in the dataset.

Figure S.7. Ferroelectric hystereses in the generated dataset computed using phase-field modeling. Example of 18 hystereses,
illustrating the diversity of shape, remanent polarization, saturation polarization, and coercive field in the dataset.
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4. Influence of the Landau coefficient on the ferroelectric hystereses
Figure S.8 demonstrates the impact of the Landau coefficients on ferroelectric hysteresis. Throughout all simulations, the
crystalline structure remained consistent. The Landau coefficients contribute significantly to the shape and characteristic
values of the hysteresis, as displayed in Figure S.8.
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Figure S.8. Influence of the Landau coefficients on the ferroelectric hystereses. Three hystereses with different sets of Landau are
performed using the same polycrystalline structure. Other simulation parameters are left unchanged. The three sets (α = −1.59× 109

C−2m2N , β = 3.34 × 1010 C−4m6N , δ = −5.3 × 1010 Cm−6m10N ) (set 1), (α = −3.79 × 109 C−2m2N , β = 1.81 × 1010

C−4m6N , δ = −9.4× 1010 Cm−6m10N ) (set 2) and (α = −3.64× 109 C−2m2N , β = 2.22× 1010 C−4m6N , δ = −9.37× 1010

Cm−6m10N ) (set 3) lead to modification of the hystereses.

The three sets were chosen as (α = −1.59×109 C−2m2N , β = 3.34×1010 C−4m6N , δ = −5.3×1010 Cm−6m10N ) (set
1), (α = −3.79×109 C−2m2N , β = 1.81×1010 C−4m6N , δ = −9.4×1010 Cm−6m10N ) (set 2) and (α = −3.64×109

C−2m2N , β = 2.22× 1010 C−4m6N , δ = −9.37× 1010 Cm−6m10N ) (set 3).



Supporting Information

5. Influence of the polycrystalline structure on the ferroelectric hystereses
Figure S.9 depicts the impact of the polycrystalline structure on ferroelectric hysteresis. Throughout all simulations, the
Landau coefficients remained constant. Varied grain sizes, orientations, and random grain centroids were employed in the
simulations. The polycrystalline grain structure significantly influences ferroelectric hysteresis, playing a pivotal role in
determining coercive field and remanent polarization values, as demonstrated in Figure S.9.
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Figure S.9. Influence of the polycrystalline structure on the ferroelectric hystereses. Hystereses with different Voronoi structures
generated are performed using the same set of Landau coefficients. Other simulation parameters are left unchanged. The four Voronoi
structures used are displayed along with the hystereses.
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6. Influence of the elastic energy on the ferroelectric hystereses
Figure S.10 illustrates the impact of elastic energy on ferroelectric hysteresis. The simulations maintained consistent Landau
coefficients and polycrystalline structure. Notably, the influence of elastic energy proves negligible in polycrystalline hafnium
oxide, corroborated by findings in Ref.6. Consequently, akin to the methodology in Ref.6, the mechanical equilibrium is not
solved during the phase-field simulation for dataset generation.
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Figure S.10. Influence of the elastic energy on the ferroelectric. Hystereses with and without solving the mechanical equilibrium are
conducted. Simulations with and without solving the mechanical equilibrium exhibit close alignment.
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7. Influence of the depolarizing field on the ferroelectric hystereses
Figure S.11 illustrates the influence of depolarizing energy on ferroelectric hysteresis. Throughout the simulations, the
Landau coefficients and polycrystalline structure remained constant. To scrutinize the impact of the depolarizing field,
we excluded the polarization charge term −∇ · P from the Poisson equation. In this scenario, the electric field is solely
determined by the applied voltage, rendering grains electrically non-interacting. Consequently, each grain undergoes
independent switching based on its orientation and coercive field.
However, reintroducing the polarization charge leads to electrical interactions between grains, altering the independent
switching behavior. Polarization switches within grains can generate a charge that influences the switching of neighboring
grains. This phenomenon results in a reduction of global coercive fields, as depicted in Figure S.11. Thus, the simulations
conducted in this study incorporate the depolarizing field for a comprehensive understanding.
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Figure S.11. Influence of the depolarizing energy on the ferroelectric hystereses. Hystereses with and without accounting for the
polarization charge terms in the Poisson equation are conducted. Electrostatic interactions significantly modify the switching dynamics.
The grain interactions result in a reduction of the coercive field.
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8. Training history
Figure S.12 shows the GNN model training history. The training loss is calculated on the 3150 samples of the training
dataset, and a validation loss on the 350 structures of the validation dataset. In training, the model hyperparameters were
optimized to minimize the mean squared error loss function. As training progresses and validation increases, both decrease
and converge.
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Figure S.12. Training history of the model. The evolution of the training and validation losses are reported during training. The model
was trained for 500 epochs.
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9. Spectral method for the electrostatic equilibrium
In this study, we employed the Fourier spectral method to address the electrostatic equilibrium, building upon the methodol-
ogy elucidated in a previous work (7). The electrostatic equilibrium in real space is expressed by the equation:

∆V (r) = f(r), (5)

where V (r) denotes the electrostatic potential, and f(r) signifies the right-hand side of the Poisson equation.

The solution in Fourier space, represented by the wavenumber vector k = (kx, ky, kz), is given by the equation:

Ṽk(k) = −G(k)f̃(k), (6)

where G−1(k) = k2x + k2y + k2z , and Ṽk(k) and f̃(k) are the Fourier transforms of the electrostatic potential and the
right-hand side, respectively. The solution can be recovered in real space by performing inverse Fourier transforms.

Periodic boundary conditions are applied along the in-plane directions, leading to the use of discrete Fourier transforms
(DFT) along x and y, while Dirichlet boundary conditions are applied along the out-of-plane direction, resulting in a the
application of the discrete sine transform (DST) along z.

The DST is given by

f̃DST
k = 2

N−1∑
n=0

fn sin

(
π(k + 1)(n+ 1)

N + 1

)
, (7)

whereas the DFT can be obtained through

f̃DFT
k =

N−1∑
n=0

fne
−i2πkn

N , (8)

Here, f̃k represents the spectral coefficient in Fourier space, and fn denotes the discrete values of the electrostatic potential
in real space along the considered axis. Hence, inverse discrete sine transform (IDST) and inverse discrete Fourier transforms
(IDFT) were applied along the respective axes to reconstruct the solution in real space from the spectral coefficients Ṽk(k).

The IDST is given by

fn =
1

N + 1

N−1∑
k=0

f̃k sin

(
π(k + 1)(n+ 1)

N + 1

)
, (9)

whereas the IDFT can be obtained through

fn =
1

N

N−1∑
k=0

f̃ke
i2πnk

N (10)

While the DST has been utilized to address the Dirichlet boundary conditions along the vertical axis in this study, it is
imperative to note that various spectral methods are available for such applications. As an illustrative alternative, the
Chebyshev collocation method can be effectively employed to handle non-periodic boundary conditions in the resolution of
partial differential equations within the context of ferroelectric phase-field modeling (8; 9).



Supporting Information

References
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