Supporting Information

Study on the preparation of ascorbic acid reduced ultrafine copper powders in the presence of different protectants and the properties of copper powders based on methionine protection

Xin Ke, ^{*a,b,c*} Bingqing Xie, ^{*a,b,c*} Jingguo Zhang, ^{*, *a,b,d*} Jianwei Wang, ^{*, *a,e*} Weiying Li,^{*b*} Liqing Ban, ^{*a,b*} Oiang Hu, ^{*a,b*} Huijun He, ^{*a,b*} Limin Wang, ^{*a,b*} Zhong Wang ^{*, *a,b*}

^aMetal Powder Materials Industrial Technology Research Institute of CHINA GRINM, Beijing 101407, China

^bGRIPM Advanced Materials Co. Ltd., Beijing 101407,

^cGeneral Research Institute for Nonferrous Metals, Beijing 100088, China

^{*d}</sup><i>China Gricy Advanced Materials Co., Ltd., Chongqing 401431, China* ^{*e*}*GRINM NEXUSX Advanced Materials (Beijing) Co. Ltd., Beijing 101407, China* Zhong Wang, *Corresponding author: wzwz99@126.com.</sup>

Fig. S1. SEM images and particle size variation of copper powder particles under different pH conditions using Met as a protectant; (a)pH=10; (b) pH=11; (c)pH=12; (d) pH=13; (e) copper powder particles size variation.

Fig. S2. SEM images and particle size variation of copper powder particles under different pH conditions using CTAB as a protectant; (a)pH=10; (b) pH=11; (c)pH=12; (d) pH=13; (e) copper powder particles size variation.

Fig. S3. SEM images and particle size variation of copper powder particles under different pH conditions using SSC as a protectant; (a)pH=10; (b) pH=11; (c)pH=12; (d) pH=13; (e) copper powder particles size variation.

Fig. S4. SEM images and particle size variation of copper powder particles at different Met concentrations using Met as a protectant; (a)Met=0.1 mol/L; (b) Met=0.2 mol/L; (c) Met=0.3 mol/L; (d) Met=0.4 mol/L; (e) Met=0.5 mol/L; (f) copper powder particles size variation.

Fig. S5. SEM images and particle size variation of copper powder particles at different Met concentrations using CTAB as a protectant; (a)CTAB=0.1 mol/L; (b) CTAB=0.2 mol/L; (c) CTAB=0.3 mol/L; (d) CTAB=0.4 mol/L; (e) CTAB=0.5 mol/L; (f) copper powder particles size variation.

Fig. S6. SEM images and particle size variation of copper powder particles at different Met concentrations using SSC as a protectant; (a)SSC=0.1 mol/L; (b) SSC=0.2 mol/L; (c) SSC=0.3 mol/L; (d) SSC=0.4 mol/L; (e) SSC=0.5 mol/L; (f) copper powder particles size variation.

Fig. S7. SEM images and particle size variation of copper powder particles at different C₆H₈O₆ concentrations using Met as a protective agent; (a) C₆H₈O₆=0.8 mol/L; (b) C₆H₈O₆=1.0 mol/L; (c) C₆H₈O₆=1.2 mol/L; (d) C₆H₈O₆=1.4 mol/L; (e) C₆H₈O₆=1.6 mol/L; (f) copper powder particles size variation.

Fig. S8. SEM images and particle size variation of copper powder particles at different C₆H₈O₆ concentrations using CTAB as a protective agent; (a) C₆H₈O₆=0.8 mol/L; (b) C₆H₈O₆=1.0 mol/L; (c) C₆H₈O₆=1.2 mol/L; (d) C₆H₈O₆=1.4 mol/L; (e) C₆H₈O₆=1.6 mol/L; (f) copper powder particles size variation.

Fig. S9. SEM images and particle size variation of copper powder particles at different C₆H₈O₆ concentrations using SSC as a protective agent; (a) C₆H₈O₆=0.8 mol/L; (b) C₆H₈O₆=1.0 mol/L; (c) C₆H₈O₆=1.2 mol/L; (d) C₆H₈O₆=1.4 mol/L; (e) C₆H₈O₆=1.6 mol/L; (f) copper powder particles size variation.

Fig. S10. SEM images and particle size variation of copper powder particles with different Cu²⁺ concentrations using Met as a protectant; (a) Cu²⁺=0.2 mol/L; (b) Cu²⁺=0.4 mol/L; (c) Cu²⁺=0.6 mol/L; (d) Cu²⁺=0.8 mol/L; (e) Cu²⁺=1.0 mol/L; (f) copper powder particles size variation.

Fig. S11. SEM images and particle size variation of copper powder particles with different Cu²⁺ concentrations using CTAB as a protectant; (a) Cu²⁺=0.2 mol/L; (b) Cu²⁺=0.4 mol/L; (c) Cu²⁺=0.6 mol/L; (d) Cu²⁺=0.8 mol/L; (e) Cu²⁺=1.0 mol/L; (f) copper powder particles size variation.

Fig. S12. SEM images and particle size variation of copper powder particles with different Cu²⁺ concentrations using SSC as a protectant; (a) Cu²⁺=0.2 mol/L; (b) Cu²⁺=0.4 mol/L; (c) Cu²⁺=0.6 mol/L; (d) Cu²⁺=0.8 mol/L; (e) Cu²⁺=1.0 mol/L; (f) copper powder particles size variation.

Fig. S13. SEM images and particle size variation of copper powder particles at different temperatures using Met as a protectant; (a) T=70°C; (b) T=80°C; (c) T=90°C; (d) copper powder particles size variation.

Fig. S14. SEM images and particle size variation of copper powder particles at different temperatures using CTAB as a protectant; (a) T=70°C; (b) T=80°C; (c) T=90°C; (d) copper powder particles size variation.

Fig. S15. SEM images and particle size variation of copper powder particles at different temperatures using SSC as a protectant; (a) T=70°C; (b) T=80°C; (c) T=90°C; (d) copper powder particles size variation.

Fig. S16. SEM cross-sectional micrographs of copper nanoflakes held at different sintering temperatures for 30 min: (a) 225°C; (b) 250°C; (c) 275°C; (d) 300°C; (e) 325°C.