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Fig. S1. Glancing angle X-ray diffraction (GAXRD) analysis results of the CTHP memristor.



Fig. S2. X-ray photoelectron spectroscopy (XPS) depth profiling analysis for Cu 2p1/2 and Hf 4f 

peak. (a) Cu, Cu2O (951.33 eV) and CuO 2p1/2 peak (952.35 eV) of XPS analysis according to the 

etching time (60 s, 80 s, 100 s). The proportion of CuO peak increases as the etched surface 

becomes closer to the interfacial layer. (b) Hf 4f peak of XPS analysis according to the etching 

time (100 s, 180 s). 100 s and 180 s correspond to the interface and bulk of HfO2, respectively.



Fig. S3. CTHP devices with different top electrode configurations. (a) and (b) shows five DC 

sweep results for Cu0.2Te0.8/HfO2/Pt and Cu0.3Te0.7/HfO2/Pt devices, respectively. Both devices 

show an initial electroforming sweep colored red. However, as the Cu composition increases, 

CTHP exhibits a gradual shift in set voltage due to an excessive injection of Cu ions in the HfO2. 

In contrast to Cu0.1Te0.9/HfO2/Pt in Fig. 3a, gradual switching behavior after electroforming is 

observed for both devices due to the increased Cu clusters and thick filament formation.



Fig. S4. The response of CTHP-based p-bit neuron circuit by input pulse streams. CTHP-based p-

bit neuron outputs at (a), Vin = 5.40 V, (b), Vin = 5.60 V and (c), Vin = 5.80 V. The figures show the 

partial responses of the neuron, resulting from 25 input pulses.



Fig. S5. Impact of the cycle-to-cycle variation on probability inference accuracy. Figure shows 

the inference results with and without the device's cycle-to-cycle (c-to-c) variation (Fig. 3) for the 

inference result in Table 1. The inferences of nodal probability with and without c-to-c variation 

are colored red and blue, respectively. As the inference process involves 128 sequential 

samplings of p-bit neurons, the inherent variation of CTHP is suppressed, resulting in two 

outcomes that exhibit no significant difference. The results show mean and standard deviation 

from 100 independent inferences.



Fig. S6. Normalized mean squared error (NMSE) for the inference in a simple Bayesian network 

in Fig. 1a. (a) NMSE for the number of total feedback iterations (5, 10, 20, 40). The error decreases 

with increased feedback iterations but reaches a saturation value at 20 feedback iterations. (b) 

NMSE for the number of sampling counts (32, 64, 128, 256). The error decreases to 128 sampling 

counts but increases again to 256 sampling counts. This behavior is attributed to the inherent 

noise in the CTHP memristor. In each condition, the error was calculated for all the posterior 

probabilities of nodes being 'True.' The control variables were held constant at the values shown 

in Fig. 6. 20 feedback iterations and 128 sampling counts for inference provide the most efficient 

method to minimize the error between the inferred and theoretical values.



Fig. S7. Device-to-device variation in CTHP devices and their sigmoidal curves. (a)-(c) show three 

sigmoidal curves obtained from three different CTHP devices. Even though the devices exhibit a 

shift in sigmoidal curves due to the device-to-device (d-to-d) variation, it can be mitigated by 

applying different set voltages to each device. This process is performed by setting the DAC 

output voltages to the MUX (Fig. 4) according to the probability-voltage sigmoidal curve of each 

device.



Fig. S8. Impact of the cycle-to-cycle and device-to-device variation on probability inference 

accuracy with the division feedback logic. The figure shows the inference results with and 

without the device's c-to-c and d-to-d variation for the inference result in Table 2. As the 

division feedback logic with an exponentially decreasing learning rate feasibly mitigates the 

effect of c-to-c variation, two inference results with and without variation show no significant 

difference. Moreover, according to the measurement data, d-to-d variation was controlled by 

applying a specific set voltages to each p-bit neuron.



Fig. S9. Standard deviation values of the Bayesian inference. (a)-(b) Matrix color mapping for 

the standard deviation of inference values for the network, shown in Fig. 7a of the main text. 

Inference results show all the conditional probabilities, P(A = T  B = T) through the number of |

samples. Generally, the result for 1000 samples shows less deviation than for 100 samples.



Fig. S10. Posterior probability inferences of a complex network. (a)-(e) The inference results of 

five posterior probabilities in a complex Bayesian network, shown in Fig. 7a of the main text, as 

a function of feedback iterations. The black lines are the inference values, and the red dashed 

lines are the theoretical values.



Fig. S11. The power consumption of the CTHP memristor and a serial resistor of the p-bit 

neuron. (a) The pulse measurement of the CTHP memristor and a serial resistor of the p-bit 

neuron. The input voltage of 6.3 V, marked as black, is applied to the top electrode of the 

memristor. The Vnode, marked as red, is the divided voltage between the memristor and the 

resistor. The inset shows a circuit configuration of the measurement. (b) Total power of the 

CTHP memristor and the serial resistor (P = Vin × Vnode / RS). The average power of one period is 

186 nW. (c) The spiking behavior in response to 128 input pulses with the identical 

measurement as a. A width and a period of the pulses are 400 μs and 4 ms, respectively. The 

most outputs correspond to spiking pulses since the Vnode > 0.3 V at the most input pulses. (d) 

Total power of the CTHP memristor and the serial resistor. The average power is 156 nW 

despite approximately 100 % spiking probability for 128 input pulses.



Table S1. Energy consumption breakdown of different works for hardware implementation of 

the Bayesian network. The energy for the representation of the single node in a Bayesian 

network is shown for each work. A clock frequency of 1.2 GHz is assumed, and a detailed 

explanation for the energy calculation is provided in Note S3. 

Component Energy (fJ) Counts

CTHP device + resistor (Rs) 1.284 1

MUX 40 1

Comparator 400 1

1-bit register (D flip-flop) 0.076 1

CTHP (This work)

Total 441.4

SiOx nanorod device 3.383 1

Comparator 400 1

Resistors (Rp, RL) 1363.125 1
SiOx nanorod1

Total 1767

MTJ device 132.4 1

MUX 40 4

Comparator 400 1

Transistor - 1

MTJ2

Total 692.4

LFSR 275.6  109× 1

Inference circuit - -CMOS3,4

Total > 275.6  109×



Note S1. Calculations of the nodal probabilities using the Bayes' theorem.

 𝑃𝑛𝑜𝑑𝑒(S  =  T)

= 𝑃(𝑆 =  𝑇 ∩  𝐶 =  𝑇) + 𝑃(𝑆 =  𝑇 ∩  𝐶 =  𝐹)

= 𝑃(𝑆 =  𝑇 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝑇 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)

= = 0.1 × 0.5 + 0.5 × 0.5   0.3

 𝑃𝑛𝑜𝑑𝑒(R  =  T)

= 𝑃(𝑅 =  𝑇 ∩  𝐶 =  𝑇) + 𝑃(𝑅 =  𝑇 ∩  𝐶 =  𝐹)

= 𝑃(𝑅 =  𝑇 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑅 =  𝑇 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)

= = 0.8 × 0.5 + 0.2 × 0.5   0.5

 𝑃𝑛𝑜𝑑𝑒(W  =  T)

= 𝑃(𝑊 =  𝑇 ∩  𝑆 =  𝑇 ∩  𝑅 =  𝑇) + 𝑃(𝑊 =  𝑇 ∩  𝑆 =  𝑇 ∩  𝑅 =  𝐹)

+ 𝑃(𝑊 =  𝑇 ∩  𝑆 =  𝐹 ∩  𝑅 =  𝑇) + 𝑃(𝑊 =  𝑇 ∩  𝑆 =  𝐹 ∩  𝑅 =  𝐹)

= 𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩  𝑅 =  𝑇)𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝑇) + 𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩  𝑅 =  𝐹)𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝐹)

+ 𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩  𝑅 =  𝑇)𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝑇) + 𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩  𝑅 =  𝐹)𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝐹)

=

𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩  𝑅 =  𝑇){𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝑇 ∩  𝐶 =  𝑇) + 𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝑇 ∩  𝐶 =  𝐹)}
+ 𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩  𝑅 =  𝐹){𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝐹 ∩  𝐶 =  𝑇) + 𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝐹 ∩  𝐶 =  𝐹)}
+  𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩  𝑅 =  𝑇){𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝑇 ∩  𝐶 =  𝑇) + 𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝑇 ∩  𝐶 =  𝐹)}
+ 𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩  𝑅 =  𝐹){𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝐹 ∩  𝐶 =  𝑇) + 𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝐹 ∩  𝐶 =  𝐹)}

= 

𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩  𝑅 =  𝑇){𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝑇 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝑇 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}
+ 𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩  𝑅 =  𝐹){𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝐹 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝐹 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}
+  𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩  𝑅 =  𝑇){𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝑇 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝑇 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}
+ 𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩  𝑅 =  𝐹){𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝐹 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝐹 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}

= 

𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩ 𝑅 =  𝑇){𝑃(𝑆 =  𝑇 | 𝐶 =  𝑇)𝑃(𝑅 =  𝑇 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝑇 | 𝐶 =  𝐹)𝑃(𝑅 =  𝑇 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}
+  𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩  𝑅 =  𝐹){𝑃(𝑆 =  𝑇 | 𝐶 =  𝑇)𝑃(𝑅 =  𝐹 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝑇 | 𝐶 =  𝐹)𝑃(𝑅 =  𝐹 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}
+  𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩ 𝑅 =  𝑇){𝑃(𝑆 =  𝐹 | 𝐶 =  𝑇)𝑃(𝑅 =  𝑇 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝐹 | 𝐶 =  𝐹)𝑃(𝑅 =  𝑇 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}
+  𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩  𝑅 =  𝐹){𝑃(𝑆 =  𝐹 | 𝐶 =  𝑇)𝑃(𝑅 =  𝐹 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝐹 | 𝐶 =  𝐹)𝑃(𝑅 =  𝐹 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}

= 0.99 ×  (0.1 ×  0.8 ×  0.5 +  0.5 ×  0.2 ×  0.5) +  0.9 ×  (0.1 ×  0.2 ×  0.5 +  0.5 ×  0.8 ×  0.5)

+ 0.9 × (0.9 ×  0.8 ×  0.5 +  0.5 ×  0.2 ×  0.5) +  0 ×  (0.9 ×  0.2 ×  0.5 +  0.5 ×  0.8 ×  0.5)

=  0 = 0.64710.0891 + 0.189 + 0.369 +



Note S2. Calculations of the posterior probability using the Bayes' theorem.

𝑃𝑝𝑜𝑠𝑡(R  =  T | W  =  T)  =
𝑃(𝑅 =  𝑇 ∩  𝑊 =  𝑇)

𝑃(𝑊 =  𝑇)

=
𝑃(𝑅 =  𝑇 ∩  𝑊 =  𝑇 ∩  𝑆 =  𝑇) + 𝑃(𝑅 =  𝑇 ∩  𝑊 =  𝑇 ∩  𝑆 =  𝐹)
𝑃(𝑊 =  𝑇 ∩  𝑆 =  𝑇 ∩  𝑅 =  𝑇) + 𝑃(𝑊 =  𝑇 ∩  𝑆 =  𝑇 ∩  𝑅 =  𝐹)

+  𝑃(𝑊 =  𝑇 ∩  𝑆 =  𝐹 ∩  𝑅 =  𝑇) + 𝑃(𝑊 =  𝑇 ∩  𝑆 =  𝐹 ∩  𝑅 =  𝐹)

=
𝑃(𝑊 =  𝑇 | 𝑅 =  𝑇 ∩  𝑆 =  𝑇)𝑃(𝑅 =  𝑇 ∩  𝑆 =  𝑇) + 𝑃(𝑊 =  𝑇 | 𝑅 =  𝑇 ∩  𝑆 =  𝐹)𝑃(𝑅 = 𝑇 ∩  𝑆 =  𝐹)
𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩  𝑅 =  𝑇)𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝑇) + 𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩  𝑅 =  𝐹)𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝐹)

+  𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩  𝑅 =  𝑇)𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝑇) + 𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩  𝑅 =  𝐹)𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝐹)

=

𝑃(𝑊 =  𝑇 | 𝑅 =  𝑇 ∩  𝑆 =  𝑇){𝑃(𝑅 =  𝑇 ∩  𝑆 =  𝑇 ∩  𝐶 =  𝑇) + 𝑃(𝑅 =  𝑇 ∩  𝑆 =  𝑇 ∩  𝐶 =  𝐹)}
+  𝑃(𝑊 =  𝑇 | 𝑅 =  𝑇 ∩  𝑆 =  𝐹){𝑃(𝑅 =  𝑇 ∩  𝑆 =  𝐹 ∩  𝐶 =  𝑇) + 𝑃(𝑅 =  𝑇 ∩  𝑆 =  𝐹 ∩  𝐶 =  𝐹)}
[𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩  𝑅 =  𝑇){𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝑇 ∩  𝐶 =  𝑇) + 𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝑇 ∩  𝐶 =  𝐹)}

+  𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩  𝑅 =  𝐹){𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝐹 ∩  𝐶 =  𝑇) + 𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝐹 ∩  𝐶 =  𝐹)}
+  𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩  𝑅 =  𝑇){𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝑇 ∩  𝐶 =  𝑇) + 𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝑇 ∩  𝐶 =  𝐹)}
+  𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩  𝑅 =  𝐹){𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝐹 ∩  𝐶 =  𝑇) + 𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝐹 ∩  𝐶 =  𝐹)}]

=

𝑃(𝑊 =  𝑇 | 𝑅 =  𝑇 ∩  𝑆 =  𝑇){𝑃(𝑅 =  𝑇 ∩  𝑆 =  𝑇 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑅 =  𝑇 ∩  𝑆 =  𝑇 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}
+  𝑃(𝑊 =  𝑇 | 𝑅 =  𝑇 ∩  𝑆 =  𝐹){𝑃(𝑅 =  𝑇 ∩  𝑆 =  𝐹 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑅 =  𝑇 ∩  𝑆 =  𝐹 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}
[𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩  𝑅 =  𝑇){𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝑇 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝑇 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}

+  𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩  𝑅 =  𝐹){𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝐹 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝑇 ∩  𝑅 =  𝐹 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}
+  𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩  𝑅 =  𝑇){𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝑇 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝑇 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}
+  𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩  𝑅 =  𝐹){𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝐹 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝐹 ∩  𝑅 =  𝐹 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}]

=

[𝑃(𝑊 =  𝑇 | 𝑅 =  𝑇 ∩  𝑆 =  𝑇){𝑃(𝑅 =  𝑇 | 𝐶 =  𝑇)𝑃(𝑆 =  𝑇 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑅 =  𝑇 | 𝐶 =  𝐹)𝑃(𝑆 =  𝑇 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}
+  𝑃(𝑊 =  𝑇 | 𝑅 =  𝑇 ∩  𝑆 =  𝐹){𝑃(𝑅 =  𝑇 | 𝐶 =  𝑇)𝑃(𝑆 =  𝐹 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑅 =  𝑇 | 𝐶 =  𝐹)𝑃(𝑆 =  𝐹 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}]

[𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩ 𝑅 =  𝑇){𝑃(𝑆 =  𝑇 | 𝐶 =  𝑇)𝑃(𝑅 =  𝑇 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝑇 | 𝐶 =  𝐹)𝑃(𝑅 =  𝑇 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}
+  𝑃(𝑊 =  𝑇 | 𝑆 =  𝑇 ∩  𝑅 =  𝐹){𝑃(𝑆 =  𝑇 | 𝐶 =  𝑇)𝑃(𝑅 =  𝐹 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝑇 | 𝐶 =  𝐹)𝑃(𝑅 =  𝐹 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}
+  𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩ 𝑅 =  𝑇){𝑃(𝑆 =  𝐹 | 𝐶 =  𝑇)𝑃(𝑅 =  𝑇 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝐹 | 𝐶 =  𝐹)𝑃(𝑅 =  𝑇 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}

+  𝑃(𝑊 =  𝑇 | 𝑆 =  𝐹 ∩  𝑅 =  𝐹){𝑃(𝑆 =  𝐹 | 𝐶 =  𝑇)𝑃(𝑅 =  𝐹 | 𝐶 =  𝑇)𝑃(𝐶 =  𝑇) + 𝑃(𝑆 =  𝐹 | 𝐶 =  𝐹)𝑃(𝑅 =  𝐹 | 𝐶 =  𝐹)𝑃(𝐶 =  𝐹)}]

=
0.99 ×  (0.8 ×  0.1 ×  0.5 +  0.2 ×  0.5 ×  0.5) + 0.9 × (0.8 ×  0.9 ×  0.5 +  0.2 ×  0.5 ×  0.5)

0.99 ×  (0.1 ×  0.8 ×  0.5 +  0.5 ×  0.2 ×  0.5) +  0.9 ×  (0.1 ×  0.2 ×  0.5 +  0.5 ×  0.8 ×  0.5)
+  0.9 × (0.9 ×  0.8 ×  0.5 +  0.5 ×  0.2 ×  0.5) +  0 ×  (0.9 ×  0.2 ×  0.5 +  0.5 ×  0.8 ×  0.5)

=  
0.99 × (0.04 + 0.05) + 0.9 × (0.36 + 0.05)

0.99 × (0.04 + 0.05) + 0.9 × (0.01 + 0.20) + 0.9 × (0.36 + 0.05) + 0 × (0.09 + 0.20)

=
0.0891 + 0.369

0.0891 + 0.189 + 0.369 + 0

=
0.4581
0.6471

≈ 0.70793

To calculate the posterior probability, the equations in the denominator and numerator 

should be converted to those in CPT. CPT expresses the relationship between a node and its 

parent node. Consequently, the probability between the node and the parent node should be 

marginalized. For example, "P(R = T ∩ W = T ∩ S = T)" can be expressed as "P(W = T | R = T ∩ S = 

T)P(R = T ∩ S = T)" according to Bayes' rule. R and S are parents of W. "P(R = T ∩ S = T ∩ C = T)" 

can be expressed as "P(R = T ∩ S = T | C = T)P(C = T)" according to Bayes' rule. C is a common 



parent of R and S. "P(R = T ∩ S = T | C = T)P(C = T)" can be represented as "P(R = T | C = T)P(S = T 

| C = T)P(C = T)", due to the conditional independence between the child nodes R and S when 

the parent node C is determined as true.

This calculation process involves marginalization in the Bayesian network consisting of 4 

nodes and 3 layers, shown in Fig. 1a. Meanwhile, in a complex Bayesian network such as the 

Bayesian network consisting of 20 nodes and 7 layers, shown in Fig. 7a, the marginalization 

process becomes exponentially intricated. In particular, exponentially more marginalization and 

multiplication processes are required in the Bayesian inference as the two nodes are farther 

from the common ancestor. Consequently, the Bayesian inference with conventional hardware 

requires a substantial amount of calculations attributed to floating−point calculations.



Note S3. Calculations of the power and energy consumption.

First, the power consumption of the devices (LFSR, MTJ, and SiOx nanorod) was 

calculated based on the values provided in the previous works.1–3 As the measured energy 

values are given in the previous works, the device operating speed was considered to calculate 

the power. For the MTJ device, the power consumption was calculated most conservatively, 

where the bitstream number of 256 is assumed.2 Furthermore, it is important to highlight that, 

to ensure a fair comparison, the technological node of the CMOS was consistently assumed to 

be 180 nm. As a result, the power consumption of the LFSR in the previous work was scaled 

regarding this assumption.4

Then, the energy for representing a single node in a Bayesian network was calculated. 

For the energy consumption of the peripheral CMOS circuit, such as MUX, register, and 

comparator, the work of Yi et al. was referred to.5 As in the previous work, a 1.2 GHz clock 

frequency was assumed for all the devices to take parasitic elements in the measurement 

system. Meanwhile, the energy consumption of a 1-bit register (D flip-flop) was calculated by 

dividing the energy consumption of the I/O register by its number of bits.
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