Supplementary Information

Performance and Stability Enhancement of Perovskite Photodetectors by Additive and Interface Engineering Using a Dual-Functional PPS Zwitterion

Abbas Ahmad Khan,^a Navneet Kumar, ^a Uijin Jung, ^a Wonjun Heo, ^b Zhaozhong Tan, ^a Jinsub Park^{*a,b}

^a Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea

^b Divison of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 04763, Republic of Korea

*Corresponding Author: jinsubpark@hanyang.ac.kr

Fig. S1: Detailed fabrication process

Fig. S2: Cross-sectional SEM image of device without PPS inerlayer

Fig. S3: Top-view SEM images of SnO_2 (a) without PPS (b) with PPS

Fig S4: Large area too-view SEM images of perovskite films at (a) Control 0% (b) 0.2% PPS (c) 0.4% PPS (c) 0.4% PPS (d) 0.6% PPS

Fig S5: Ratio of (110) peak intensity of perovskite with various PPS concentration.

Fig S6: Tauc plot of (a) CsMAPbI₃ (b) 0.2% PPS (c) 0.4% PPS (d) 0.6% PPS

Fig S7: (a) XPS spectra of S 2p of SnO₂ and SnO₂/PPS layers. (b) FTIR spectra of PPS and PPS zwitterion incorporated perovskite.

Fig S8: Deconvoluted C 1s and (d) deconvoluted O 1s spectra of Perovskite.

Fig S9: Cross-sectional SEM Images with the thickness (a) control and (b) 0.4% PPS incorporated perovskite films

Fig S10: (a) PL spectra of complete devices (b) TRPL spectra of complete devices

Fig S11: Perovskite only devices at different concentrations (a) dark current (b) photocurrent. PPS incorporated Perovskite devices with SnO_2 layer (c) dark current (d) photocurrent

Fig S12: Different interlayer concentration of PPS (a) dark current (b) photocurrent

W/O PPS - 20 Days

W/O PPS - Fresh

With PPS - 20 Days

Fig S13: Sample stability images with and without PPS for over 30 days.

With PPS - Fresh

W/O PPS – 30 Days

With PPS - 30 Days

With PPS - 4 hrs, T=130° C

With PPS - 24 hrs, T=130° C

Fig S14: Thermal stability of samples with and without PPS

	FWHM	Crystallite Size (nm)
Control	0.1359	65.5
0.2%	0.1374	64.80
0.4%	0.1385	64.28
0.6%	0.1404	63.32

Table S1: FWHM and Crystallite size of (110) peak of perovskite with different concentration of PPS.

Table S2: FWHM of control and with PPS incorporated perovskite films.

Peak	FWHM of Control	FWHM of Psk:PPS (0.4%)
(110)	0.1359	0.1374
(220)	0.1705	0.1682
(310)	0.1913	0.1872

Table S3: Atomic concentration of the elements.

Atom	Atomic % in PSk	Atomic% in PSK:PPS
С	28.09	24.54
0	6.15	4.46
Ι	53.01	57.8
Pb	12.75	13.2

Table S4: Fitted parameters of TRPL decay in figure 5b.

Film	А	$ au_1$ (ns)	В	$\tau_{2}(ns)$	$ au_{avg}$ (ns)
Psk	0.78663	2.92794	0.56691	11.95355	9.664089
Psk:PPS	0.48183	23.87487	0.14917	78.20074	51.22724

Table S5: Fitted parameters of TRPL decay in figure S10(b)

Film	Α	$ au_1$ (ns)	В	τ_2 (ns)	τ_{avg} (ns)
SnO2/Psk:PPS	141.41	164	1772.6	26.6	71.89951
SnO2/PPS(0.2%)/Psk:PPS	269.8	138	3059.3	35.5	61.6683

	I _L (A)	I _D (A)	Respo nsivity A/W	On/off	Detectivit y (J)	Rise/Dec ay time (sec)
SnO ₂ /Psk	4.08×10^{-7}	1.32×10^{-10}	3.26	3.0×10 ³	5.62×10 ¹²	1.00/1.12
SnO ₂ /Psk:PPS(0.4%)	6.58×10^{-7}	8.12×10 ⁻¹¹	5.27	8.1×10 ³	1.15×10 ¹³	0.98/0.73
SnO ₂ /PPS(0.2%)/Psk:PPS(0. 4%)	7.41×10 ⁻⁷	6.05×10 ⁻¹¹	5.93	1.2×10 ⁴	1.51×10 ¹³	0.74/0.09

 Table S6: SnO₂/Psk, SnO₂/Psk:PPS(0.4%), and SnO₂/PPS(0.2%)/Psk:PPS(0.4%) Photodetector device results obtained from I-V.

Table S7: The photodetector device results obtained by performing I-V measurements at various concentrations of PPS incorporation in the perovskite layer and on bare SnO₂.

	I _L (A)	I _D (A)	Responsivity A/W	On/off	Detectivity (J)
SnO ₂ /Psk	4.08×10 ⁻⁷	1.32×10^{-10}	3.26	3.0×10 ³	5.62×10 ¹²
SnO ₂ /Psk:PPS(0.2%)	5.06×10 ⁻⁷	9.69×10 ⁻¹¹	4.04	5.2×10 ³	8.12×10 ¹²
SnO ₂ /Psk:PPS(0.4%)	6.58×10^{-7}	8.12×10 ⁻¹¹	5.27	8.1×10 ³	1.15×10 ¹³
SnO ₂ /Psk:PPS(0.6%)	4.64×10 ⁻⁷	9.15×10 ⁻¹¹	3.71	5.0×10 ³	7.66×10 ¹²

Table S8: The photodetector device results obtained by performing I-V measurements at various concentrations of PPS interlayer with pristine perovskite.

	I _L (A)	I _D (A)	Responsivity A/W	On/off	Detectivity (J)
SnO ₂ /Psk	4.08×10^{-7}	1.32×10^{-10}	3.26	3.0×10 ³	5.62×10^{12}
SnO ₂ /PPS(0.1%)/Psk	4.55×10^{-7}	9.42×10^{-11}	3.64	4.8×10^{3}	7.40×10^{12}
SnO ₂ /PPS(0.2%)/Psk	4.64×10^{-7}	8.67×10^{-11}	3.71	5.3×10 ³	7.88×10^{12}
SnO ₂ /PPS(0.4%)/Psk	4.49×10^{-7}	1.08×10^{-10}	3.59	4.1×10 ³	6.82×10^{12}

Table S9: The photodetector device results obtained by performing I-V measurements at various concentrations of PPS interlayer with PPS incorporated (0.4%) perovskite.

	I _L (A)	I _D (A)	Responsi vity A/W	On/off	Detectivit y (J)
SnO ₂ /Psk	4.08×10^{-7}	1.32×10^{-10}	3.26	3.0×10 ³	5.62×10^{12}
SnO ₂ /Psk:PPS(0.4%)	6.58×10^{-7}	8.12×10^{-11}	5.27	8.1×10 ³	1.15×10^{13}
SnO ₂ /PPS(0.1%)/Psk:PPS(0.4%)	7.01×10^{-7}	7.17×10^{-11}	5.60	9.7×10 ³	1.31×10^{13}
SnO ₂ /PPS(0.2%)/Psk:PPS(0.4%)	7.41×10^{-7}	6.05×10^{-11}	5.93	1.2×10^{4}	1.51×10^{13}
SnO ₂ /PPS(0.4%)/Psk:PPS(0.4%)	5.31×10^{-7}	9.71×10^{-11}	4.24	5.4×10 ³	8.52×10^{12}