
Integrating Ultraviolet Sensing and Memory Functions in Gallium Nitride-based Optoelectronic Devices

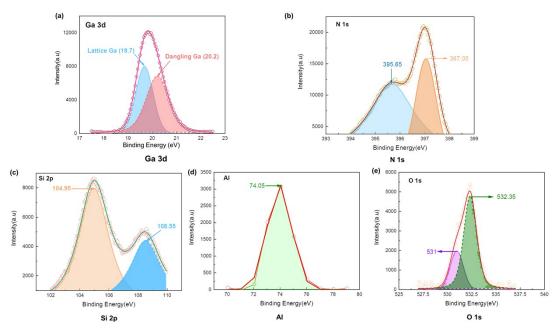
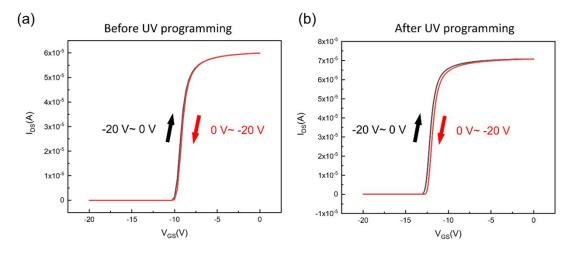
Kuan-Chang Chang¹, Xibei Feng¹, Xinqing Duan¹, Huangbai Liu¹, Yanxin Liu¹, Zehui Peng¹, Xinnan Lin^{2,*}, Lei Li^{1,*}.

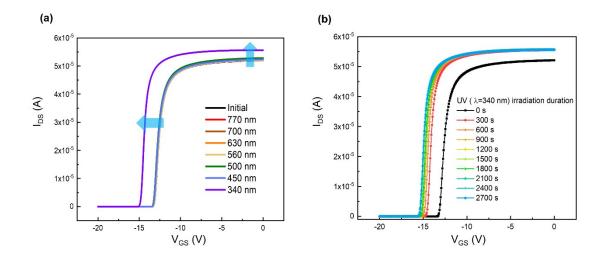
¹ School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China

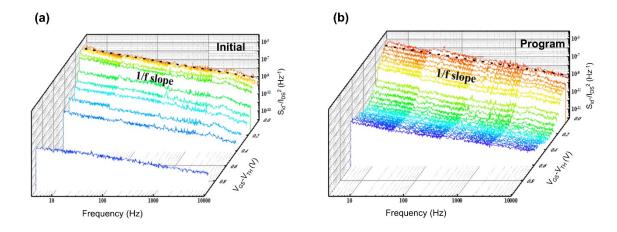
² Anhui Engineering Research Center of Vehicle Display Integrated Systems, School of Integrated Circuits, Anhui Polytechnic University, Wuhu 241000, China

Corresponding authors. E-mail address: <u>lilei@pkusz.edu.cn</u> (Lei Li) xnlin@mail.ahpu.edu.cn (Xinnan Lin)

Figure S1. (a) *EDS results of Si, Al, Ga, N elements in the memory device.* (b) *The EDS image shows the cross-section multi-layer structure in gate region.*


Figure S2. X-ray photoelectron spectroscopy (XPS) spectra of GaN optoelectronic memory. (a) Ga 3d regions. (b) N 1s regions. (c) Si 2p regions. (d) Al region. (e) O 1s regions.


Figure S3. Basic I-V characteristics of GaN optoelectronic memory. (a) The transfer characteristics. (b) The output characteristics. (c) The ultra-low gate leakage current.

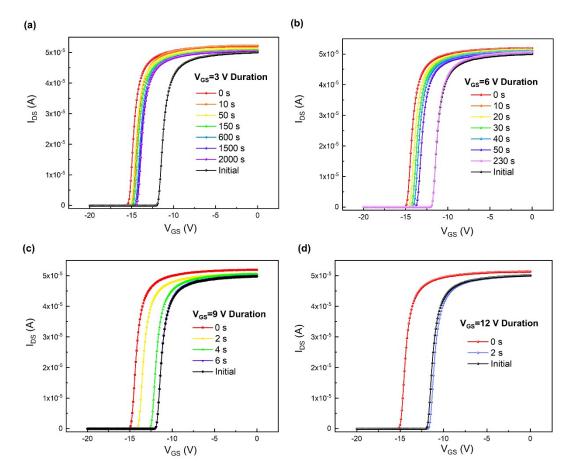
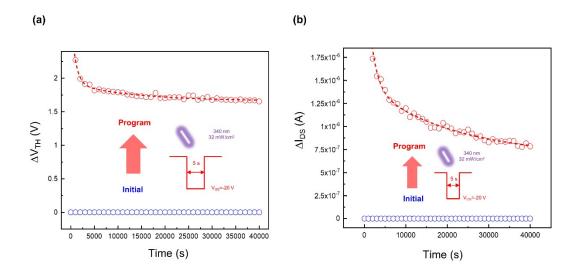
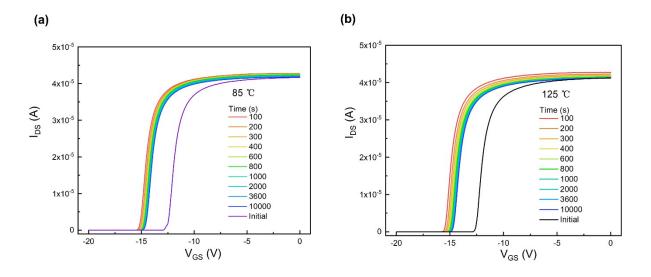

Figure S4. (*a*) *Hysteretic behavior before UV programming* (*b*) *Hysteretic behavior with respect to the incident UV powers.*

Figure S5. (a) GaN optoelectronic memory's response to light exposure at various wavelengths. (b) Effects of UV irradiation duration on the programming speed and memory state.

Figure S6. 1/*f* noise characteristics of GaN optoelectronic memory before and after UV programming. (a) Initial state. (b) Programmed with UV irradiation.


Figure S7. The influence of gate voltage on the erasure time of GaN optoelectronic memory. Erase the device under different positive gate pressures: (a) 3V; (b) 6V; (c) 9V; (d)12V

The biexponential fitting result of ΔV_{TH} retention characteristics in Figure S8 a is shown in formula (1):


$$\Delta V_{TH} = 1.061e^{\left(-\frac{t}{936.286}\right)} + 0.26e^{\left(-\frac{t}{13509.522}\right)} + 1.661 \ \#(1)$$

The biexponential fitting result of ΔI_{DS} retention characteristics in **Figure S8** b is shown in formula (2):

$$\Delta I_{DS} = 1.524 \times 10^{-6} e^{\left(-\frac{t}{1627.469}\right)} + 7.822 \times 10^{-7} e^{\left(-\frac{t}{20890.698}\right)} +$$

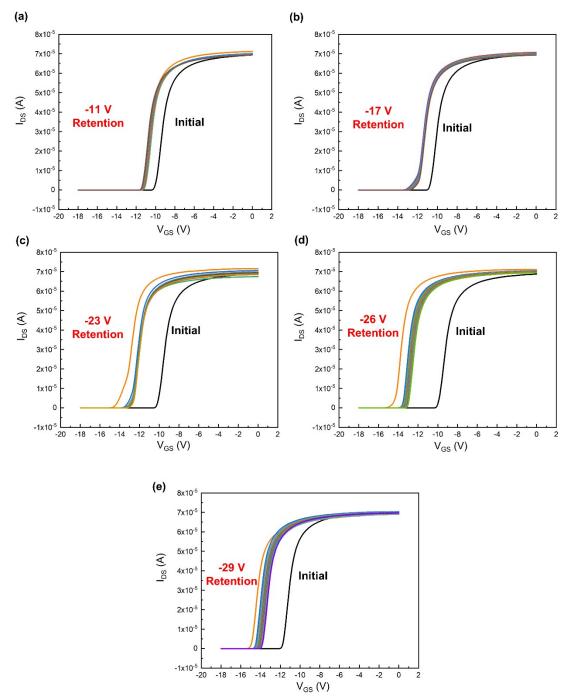


Figure S8. (a) Fitting result of the retention curves for ΔV_{TH} . (b) Fitting result of the retention curves for ΔI_{DS} .

Figure S9. Retention characteristics of GaN optoelectronic memory at different temperatures: (a) 85 °C; (b) 125 °C.

Supplementary Information 10

Figure S10. The retention characteristics of the transition curves for five storage states of the memory: (a) -11 V; (b) -17 V; (c) -23 V; (d) -26 V; (e) -29 V.