Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Bridged o-carborane-anthracene dyads as dual state emission luminogens: synthesis, characterization, and mechanochromic property

Chunyue Xu $^{\text {a }}$, Tianrui Lia ${ }^{\text {a }}$, Jinling Miao*b ${ }^{\text {b }}$, Kexin Liu ${ }^{\text {b }}$, Yong Nie*a ${ }^{\text {, Guangning Liu }}{ }^{\text {b }}$, Xuchuan Jiang*a,c
${ }^{a}$ Institute for Smart Materials \& Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022 Jinan, P. R. China
${ }^{\mathrm{b}}$ School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, 250022 Jinan, P. R. China
${ }^{\text {c S School of Materials Science and Engineering, University of Jinan, } 250022 \text { Jinan, P. R. China }}$

Contents

Experimental section

Table S1 Crystal data and structure refinement for 2
Table S2 Selected bond lengths and torsion angles for 2
Fig. S1 Structures of $\mathbf{1}$ and $\mathbf{2}$ optimized at the B3LYP/6-31G (d,p) level of theory
Table S3 Selected bond lengths, bond angles and torsion angles of the optimized structures of $\mathbf{1}$ and 2
Fig. S2 Absorption spectrum of $\mathbf{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by DFT calculation
Fig. S3 Absorption spectrum of $\mathbf{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by DFT calculation
Table S4 Computed excitation energies and oscillator strengths for $\mathbf{1}$ from TD-DFT calculations in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
Table S5 Computed excitation energies and oscillator strengths for $\mathbf{2}$ from TD-DFT calculations in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
Table S6 Emission lifetime data of solid samples
Fig. S4 PL decay curve of $\mathbf{1}\left(\lambda_{\text {ex }}=380 \mathrm{~nm}, \lambda_{\mathrm{em}}=522 \mathrm{~nm}\right)$
Fig. S5 PL decay curve of 2 (a) $\lambda_{\mathrm{ex}}=380 \mathrm{~nm}, \lambda_{\mathrm{em}}=448 \mathrm{~nm}$; b) $\lambda_{\mathrm{ex}}=380 \mathrm{~nm}, \lambda_{\mathrm{em}}=518 \mathrm{~nm}$)
Fig. S6 CIE 1931 chromaticity diagram of $\mathbf{1}$ and 2
Fig. S7 FT-IR spectrum of $\mathbf{2}$ (KBr pellet)
Fig. $\mathbf{S 8}{ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{2}$ in CDCl_{3}
Fig. $\mathbf{S 9}{ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{2}$ in CDCl_{3}
Fig. $\mathbf{S 1 0}{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectrum of $\mathbf{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
Fig. S11 FT-IR spectrum of silica gel composite of $\mathbf{1}$
Fig. S12 FT-IR spectrum of silica gel composite of $\mathbf{2}$

Experimental section

Standard Schlenk techniques were used for the synthetic reaction under Ar. The solvents were commercially available and used without further purification. IR spectra were recorded in the range $450-4000 \mathrm{~cm}^{-1}$ on a Perkin Elmer Tensor II spectrometer using KBr pellets. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ analyses were performed using a Bruker Avance III 600 MHz spectrometer. As internal references for ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy the signals of CDCl_{3} were used and calculated relative to tetramethylsilane (TMS). ${ }^{11}$ B-NMR spectrum was recorded in dichloromethane solutions ($\mathrm{D}_{2} \mathrm{O}$ was added for locking) on a Bruker AVANCE III 500 spectrometer. Melting points were measured with a SGW X-4 apparatus and are not corrected. The high resolution mass spectrum was measured with a Thermo Scientific Q Exactive HF Orbitrap-FTMS instrument (AP-MALDI positive ion mode). UV-Vis spectra were recorded using a UV-9000S spectrometer. Emission spectra were measured with an Edinburgh FLS920 fluorimeter using a front-face solid sample configuration for solid samples. Absolute fluorescence quantum yields were obtained using an integrating sphere.

Synthesis of compound 2

Under argon atmosphere, compound $\mathbf{1}(80.1 \mathrm{mg}, 0.23 \mathrm{mmol})$ was added into a Schlenk flask, cooled in ice-water bath, and sodium borohydride ($18.9 \mathrm{mg}, 0.50 \mathrm{mmol}$; added in three batches) and 30 mL of cold THF (kept in the refrigerator for about 3 h), and stirred to produce a yellow solution. After 30 min , the ice-water bath was removed and the solution was stirred at room temperature for 30 min , which turned pale yellow. After cooling in ice-water bath again, it was quenched the reaction with dilute hydrochloric acid ($30 \mathrm{~mL}, 1 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$). The aqueous phase was extracted with dichloromethane $(20 \mathrm{~mL} \times 5)$, the organic phases were combined, dried with anhydrous sodium sulfate, filtered, and the filtrate was dried under reduced pressure to obtain a crude product, which was separated by preparative thin layer chromatography (eluent n-hexane/dichloromethane $=2 / 1, V / V$) to obtain the pale yellow solid 2.

2: 71.6 mg , yield: $89.2 \% ; \mathrm{R}_{\mathrm{f}}=0.70$ (n-hexane: dichloromethane $=2: 1, V / V$) m.p. $185.5^{\circ} \mathrm{C} ; \mathrm{IR}$ (KBr): $v=3361(\mathrm{~N}-\mathrm{H}), 3060,2920(\mathrm{C}-\mathrm{H}), 2586(\mathrm{~B}-\mathrm{H}), 1453,1260(\mathrm{C}-\mathrm{N}), 1071,885,728 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.11(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.03(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.62 \sim 7.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.53 \sim 7.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.96(\mathrm{~s}, 1 \mathrm{H}$,
$\mathrm{C}_{\text {cage }} \mathrm{H}$), 2.93 (s, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=131.41,130.18,129.39,128.67,127.02$, 126.91, 125.25, 123.02, 93.79, 69.33, 45.47; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) $\delta-3.24$ (1B), -10.10 (1B), -11.55 (4B), -13.47 (2B), -14.21 (2B); MALDI-MS: m / z (\%): calcd. for $\mathrm{C}_{17} \mathrm{~B}_{10} \mathrm{H}_{23} \mathrm{~N}, 351.2756[\mathrm{M}]^{+}$, found 351.2749 .

Table S1 Crystal data and structure refinement for $\mathbf{2}$

Empirical formula	$\mathrm{C}_{68} \mathrm{H}_{92} \mathrm{~B}_{40} \mathrm{~N}_{4}$
Formula weight	1397.85
Temperature/K	293
Crystal system	orthorhombic
Space group	Pna2 ${ }_{1}$
a / \AA	24.8057(6)
b/Å	15.1639(4)
c/ \AA	21.0939(6)
α°	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	7934.5(4)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.170
μ / mm^{-1}	0.060
$\mathrm{F}(000)$	2912.0
Crystal size/mm ${ }^{3}$	$0.65 \times 0.44 \times 0.41$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	7.00 to 54.12
Index ranges	$-26 \leq h \leq 30,-18 \leq \mathrm{k} \leq 18,-25 \leq 1 \leq 25$
Reflections collected	65154
Independent reflections	$14730\left[\mathrm{R}_{\text {int }}=0.0462, \mathrm{R}_{\text {sigma }}=0.0405\right]$
Data/restraints/parameters	14730/1/1009
Goodness-of-fit on F^{2}	1.013
Final R indexes $[\mathrm{l}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0686, \mathrm{wR}_{2}=0.1613$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1145, \mathrm{wR}_{2}=0.1947$
Largest diff. peak/hole / e \AA^{-3}	0.26/-0.25
CCDC deposition number	2160410

Table S2 Selected bond lengths and torsion angles for 2

bond lengths (\AA)			bond angles [${ }^{\circ}$]		torsion angles [${ }^{\circ}$]	
C1-C2	$1.707(8)$	C1-C2-N1	$120.9(5)$	C1-C2-N1-C3	-59.81	
C2-N1	$1.408(6)$	C2-N1-C3	$120.1(4)$	C2-N1-C3-C4	-170.15	
N1-C3	$1.453(6)$	N1-C3-C4	$111.9(5)$	N1-C3-C4-C5	89.57	
C3-C4	$1.528(8)$	C3-C4-C5	$119.7(6)$	N1-C3-C4-C17	-94.44	
C4-C5	$1.411(10)$	C3-C4-C17	$119.4(7)$	C18-C19-N2-C20	104.62	
C4-C17	$1.404(9)$	C18-C19-N2	$115.9(4)$	C35-C36-N3-C37	-103.18	
C18-C19	$1.722(7)$	C19-N2-C20	$120.0(4)$	C52-C53-N4-C54	113.94	
C19-N2	$1.408(6)$	C35-C36-N3	$116.8(4)$			
N2-C20	$1.463(6)$	C36-N3-C37	$119.7(4)$			
C35-C36	$1.696(7)$	C52-C53-N4	$119.1(4)$			
C36-N3	$1.403(6)$	C53-N4-C54	$120.5(4)$			
N3-C37	$1.478(6)$					
C52-C53	$1.704(7)$					
C53-N4	$1.390(6)$					
N4-C54	$1.462(7)$					

Reference for the Gaussian package for the DFT calculations:

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

Fig. S1 Structures of $\mathbf{1}$ and $\mathbf{2}$ optimized at the B3LYP/6-31G (d,p) level of theory
Table S3 Selected bond lengths/angles and torsion angles of the optimized structures of $\mathbf{1}$ and $\mathbf{2}$

Compounds	bond lengths (\AA)		Bond angles [${ }^{\circ}$]		torsion angles [${ }^{\circ}$]	
1	C1-C2	1.648	C2-C1-N49	113.24	C2-C1-N49-C24	-177.55
	C1-N40	1.417	C1-N49-C24	118.49	C1-N49-C24-C26	-178.84
	N40-C24	1.287	N49-C24-C26	125.68	N49-C24-C26-C27	25.09
	C24-C26	1.465	C24-C26-C27	123.14	N49-C24-C26-C28	-157.80
	C26-C28	1.430	C24-C26-C28	116.70		
	C26-C27	1.429				
2	C1-C2	1.708	C1-C2-N50	115.47	C2-C1-N50-C24	125.44
	C1-N50	1.411	C1-N50-C24	119.87	C1-N50-C24-C27	117.80
	N50-C24	1.478	N50-C24-C27	110.03	N50-C24-C27-C28	85.17
	C24-C27	1.515	C24-C27-C28	119.87	N50-C24-C27-C29	-105.06
	C27-C28	1.416	C24-C27-C29	119.86		
	C27-C29	1.416				

Fig. S2 Absorption spectrum of $\mathbf{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by DFT calculation

Fig. S3 Absorption spectrum of 2 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by DFT calculation
Table S4 Computed excitation energies and oscillator strengths for $\mathbf{1}$ from TD-DFT calculations in

$\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{\mathrm{a}}$

state	E (ev)	$\lambda(\mathrm{nm})$	f	transitions
1	2.7617	448.95	0.3189	HOMO \rightarrow LUMO (99.0\%)
2	3.6582	338.92	0.0711	HOMO - $1 \rightarrow$ LUMO (75.5\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2$ (22.4\%)
3	3.9200	316.28	0.0092	HOMO - $3 \rightarrow$ LUMO (10.8\%)
				HOMO - $2 \rightarrow$ LUMO (85.7\%)
4	4.000	309.96	0.0408	$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+1$ (95.7\%)
5	4.1068	301.90	0.0034	HOMO - $3 \rightarrow$ LUMO (84.0\%)
				HOMO - $3 \rightarrow$ LUMO + 1 (2.1\%)
				HOMO - $2 \rightarrow$ LUMO (11.2\%)
6	4.6532	267.48	0.6324	HOMO - $4 \rightarrow$ LUMO (9.8\%)
				HOMO-1 \rightarrow LUMO (17.4\%)
				HOMO - $1 \rightarrow$ LUMO + 1 (15.7\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2$ (54.6\%)
7	4.7439	261.35	0.4132	HOMO - $4 \rightarrow$ LUMO (84.4\%)
				$\mathrm{HOMO}-1 \rightarrow \mathrm{LUMO}+1(2.2 \%)$
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2$ (5.8\%)
8	4.9446	250.75	0.0454	HOMO - $2 \rightarrow$ LUMO + 1 (2.9\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2 \text { (2.0\%) }$
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+3$ (89.5\%)

9	5.2615	235.64	0.1020	$\begin{gathered} \mathrm{HOMO}-1 \rightarrow \mathrm{LUMO}+1(11.7 \%) \\ \mathrm{HOMO} \rightarrow \mathrm{LUMO}+2(2.1 \%) \\ \mathrm{HOMO} \rightarrow \mathrm{LUMO}+4(79.6 \%) \end{gathered}$
10	5.3123	233.39	0.7832	$\begin{gathered} \text { HOMO - } 3 \rightarrow \text { LUMO }+1(2.7 \%) \\ \text { HOMO - } 2 \rightarrow \text { LUMO }+1(2.5 \%) \\ \text { HOMO }-1 \rightarrow \mathrm{LUMO}(2.8 \%) \\ \mathrm{HOMO}-1 \rightarrow \mathrm{LUMO}+1(61.7 \%) \\ \mathrm{HOMO} \rightarrow \mathrm{LUMO}+2(11.0 \%) \end{gathered}$

${ }^{\text {a calculated }}$ at the B3LYP/6-31G (d, p) level of theory.

Table S5 Computed excitation energies and oscillator strengths for $\mathbf{2}$ from TD-DFT calculations in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{\mathrm{a}}$

state	E (ev)	$\lambda(\mathrm{nm})$	f	transitions
1	3.1666	391.54	0.1365	HOMO \rightarrow LUMO (98.5\%)
2	3.8632	320.94	0.0068	HOMO - $1 \rightarrow$ LUMO (56.6\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+1$ (42.5\%)
3	4.3226	286.83	0.0040	HOMO - $2 \rightarrow$ LUMO (89.9\%)
				HOMO - $1 \rightarrow$ LUMO (3.4\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+1$ (2.2\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+4$ (2.2\%)
4	4.6104	268.92	0.0192	HOMO - $3 \rightarrow$ LUMO (75.3\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+3$ (9.5\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+4$ (11.3\%)
5	4.7944	258.60	0.0147	$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2$ (97.6\%)
6	4.8877	253.67	0.1274	HOMO - $3 \rightarrow$ LUMO (8.8\%)
				HOMO - $2 \rightarrow$ LUMO (4.2\%)
				HOMO - $1 \rightarrow$ LUMO (3.0\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+1$ (5.4\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+3$ (73.8\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+4$ (2.1\%)
7	4.9869	248.62	0.4133	HOMO - $3 \rightarrow$ LUMO (12.5\%)
				HOMO -1 \rightarrow LUMO (9.1\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+1$ (14.7\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+4$ (60.9\%)
8	5.0149	247.23	1.3450	HOMO - $2 \rightarrow$ LUMO (4.5\%)
				HOMO - $1 \rightarrow$ LUMO (25.8\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+1$ (32.8\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+3$ (12.8\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+4$ (21.8\%)

9	5.3698	230.89	0.0004	HOMO - $4 \rightarrow$ LUMO (45.4\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+5$ (2.4\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+6$ (3.4\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+7$ (46.0\%)
10	5.5257	224.38	0.0016	HOMO - $5 \rightarrow$ LUMO (21.4\%)
				HOMO - $3 \rightarrow$ LUMO + 1 (8.3\%)
				HOMO - $2 \rightarrow$ LUMO + 1 (41.6\%)
				HOMO - $1 \rightarrow$ LUMO + 3 (7.0\%)
				HOMO -1 \rightarrow LUMO + 4 (11.0\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+5$ (3.2\%)
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+9$ (4.4\%)

${ }^{\text {a }}$ calculated at the B3LYP/6-31G (d,p) level of theory.

Table S6. Emission lifetime data of solid samples

Compounds	$\tau_{1}(\mathrm{~ns})$	percent	$\tau_{2}(\mathrm{~ns})$	percent	$\tau_{3}(\mathrm{~ns})$	percent	$\tau(\mathrm{ns})$
$\mathbf{1}$	0.8416	81.49	1.7116	18.51			1.00
$\mathbf{2}^{\text {a }}$	0.3974	35.41	1.5566	58.59	5.9336	6.00	1.41
$\mathbf{2}^{\mathbf{b}}$	7.0730	59.02	14.4062	40.98			10.08

$\mathrm{a}: \lambda_{\mathrm{em}}=448 \mathrm{~nm} ; \mathrm{b}: \lambda_{\mathrm{em}}=518 \mathrm{~nm}$

Fig. S4 PL decay curve of $\mathbf{1}\left(\lambda_{\mathrm{ex}}=380 \mathrm{~nm}, \lambda_{\mathrm{em}}=522 \mathrm{~nm}\right)$

Fig. S5 PL decay curve of 2 (a): $\left.\lambda_{\mathrm{ex}}=380 \mathrm{~nm}, \lambda_{\mathrm{em}}=448 \mathrm{~nm} ; \mathrm{b}\right): \lambda_{\mathrm{ex}}=380 \mathrm{~nm}, \lambda_{\mathrm{em}}=518 \mathrm{~nm}$)

Fig. S6 CIE 1931 chromaticity diagram of $\mathbf{1}$ and $\mathbf{2}$ (solid circles represent $\mathbf{1}$ and pentacles represent $\mathbf{2}$; powder: black; ground sample: blue; ground then annealed: red)

Fig. S7 FT-IR spectrum of $\mathbf{2}(\mathrm{KBr}$ pellet)

Fig. $\mathbf{S 8}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{2}$ in CDCl_{3}

Fig. $\mathbf{S 9}{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{2}$ in CDCl_{3}

Fig. $\mathbf{S 1 0}{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectrum of $\mathbf{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Fig. S11 FT-IR spectrum of the silica gel composite of $\mathbf{1}$

Fig. S12 FT-IR spectrum of the silica gel composite of 2

