Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Dimerization reactions with oxidized brominated thiophenes

Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France

Khaled Youssef, Magali Alain, Thomas Cauchy and Frédéric Gohier

A- Experimental procedure		2
Figure S 1 : ¹ H NMR spectrum of 1-SO ₂		6
Figure S 2 : ¹ H NMR spectrum of 1-CySO		6
Figure S 3: ¹³ C NMR spectrum of 1-CySO		7
Figure S 4: ¹ H NMR spectrum of 1-BtSO ₂		
Figure S 5: ¹³ C NMR spectrum of 1-BtSO ₂		
Figure S 6: ¹ H NMR spectrum of 2-Cymix		9
Figure S 7: ¹³ C NMR spectrum of 2-Cymix		9
Figure S 8: ¹ H NMR spectrum of 3-Cymix		10
Figure S 9: ¹³ C NMR spectrum of 3-Cymix		
Figure S 10 : ¹ H NMR spectrum of 4-SO ₂		
Figure S 11: ¹ H NMR spectrum of 4-BtSO ₂		
Figure S 12: ¹³ C NMR spectrum of 4-BtSO₂		
X-ray structures of		
1-CySO		13
2-Cymix		14
3-Cymix		15
B- Theoretical calculations		17
3,4-dibromothiophene 1	2-Cymix	
<u>1-SO</u> 27	<u>2-Cy</u>	81
<u>1-SO2</u> 34	<u>3-bromothiophene</u> 3	84
1-CySO 42	<u>3-SO</u>	90
1-Cymix 45	<u>3-SO2</u>	96
<u>1-Cy</u> 47	<u>3-CySO</u>	
2-bromothiophene 251	<u>3-Cymix</u>	
<u>2-SO</u>	<u>3-Cy</u>	
<u>2-SO2</u>	2,5-dibromothiophene 4	
2-CySO 74	4-SO	

A- Experimental Procedure

General information. 3,4-dibromothiophene S,S-dioxide was prepared by the procedure of Lu.¹ 2,5dibromothiophene, 2,3,4,5-tetrabromothiophene S,S-dioxides are synthesized following the procedure of V. G. Nenajdenko.² Reagents and chemicals from commercial sources were used without further purification. Solvents were dried and purified using standard techniques. Microwave-assisted reactions were performed in the cavity of a Biotage Initiator+ system in sealed reactors. Flexible plates ALUGRAM® Xtra SIL G UV254 from MACHEREY-NAGEL were used for TLC. Compounds were detected by UV irradiation (Bio block Scientific). NMR spectra were recorded with a Bruker AVANCE III 300 (¹H, 300 MHz and ¹³C, 75MHz) or a Bruker AVANCE DRX500 (¹H, 500 MHz; ¹³C, 125 MHz). Chemical shifts are given in ppm relative to the deuterated solvent and coupling constants J in Hz. Matrix-Assisted Laser Desorption/Ionization was performed on MALDI-TOF MS BIFLEX III Bruker Daltonics spectrometer. High-resolution mass spectrometry (HRMS) was performed with a JEOL JMS700 B/E or a JEOL Spiral-TOF JMS3000.

Synthesis of 1-SO2

To a 100 ml three-neck round-bottom flask fitted with a dropping funnel and a thermometer, 1.6 ml (35eq) of 30% H₂O₂ was added dropwise to the mixture of trifluoroacetic anhydride (4.23 ml,15eq) and sulfuric acid (0.25ml) and stirred in a NaCl-ice bath (-15 to -20 °C) so that the temperature was kept below 0°C. The solution was stirred for another 15 min, and 0.5 g (2.1 mmol) of 3,4-dibromothiophene in 5 ml of dichloromethane was added all at once. The reaction mixture was allowed to warm to room temperature with stirring for 3 h. Then the solution was transferred to a 250 ml erlenmeyer flask in a NaCl-ice bath, and 150 ml of saturated sodium carbonate solution were slowly added to bring the pH up to around 7. The solution was extracted with dichloromethane. The organic phases were combined and dried over MgSO₄. Solvents were removed on a rotary evaporator, to give a white-pale yellow powder with a yield of 76%. ¹H NMR (300 MHz, Chloroform-*d*) δ 6.83 (s, 1H).

Synthesis of 1-CySO

To a 100 ml three-neck round-bottom flask fitted with a dropping funnel and a thermometer, 0.38 ml (8eq) of 30% H₂O₂ was added dropwise to the mixture of trifluoroacetic anhydride (4.23 ml,15eq) and sulfuric acid (0.25ml) and stirred in a NaCl-ice bath (-15 to -20 °C) so that the temperature was kept below 0°C. The solution was stirred for another 15 min, and 0.5 g (2.1 mmol) of 3,4-dibromothiophene in 5 ml of dichloromethane was added all at once. The reaction mixture was allowed to warm to room

temperature with stirring for 3 h. Then the solution was transferred to a 250 ml erlenmeyer flask in a NaCl-ice bath, and 150 ml of saturated sodium carbonate solution was slowly added to bring the pH up to around 7. The solution was extracted with dichloromethane. The organic solutions were combined and dried over MgSO₄. Solvents were removed on a rotary evaporator, and the remaining brown-orange solid was washed with 20 ml of ethanol (three times). A gray precipitate was obtained in 42 % yield. ¹H **NMR** (300 MHz, DMSO-*d*₆) δ 7.43 (s, 1H), 5.52 (d, *J* = 3.7 Hz, 1H), 5.04 (dd, *J* = 2.1, 0.5 Hz, 1H), 4.74 (dd, *J* = 3.7, 2.1 Hz, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 138.1, 131.4, 121.7, 117.2, 79.9, 72.6, 70.6, 70.4. **HRMS** (EI) m/z: Calc for C₈H₄Br₄O₂S (M+),511.6386; Found 367.7499 (extrusion of SO₂, HBr upon measurement). **IR**: 1148 , 1123, 1052, 1028 cm⁻¹.

Synthesis of 1-BtSO₂

Into a round bottom flask charged stirring bar, 3g of 3,4-dibromothiophene S,S-dioxyde **1-SO**₂ were dissolved in 40 ml of acetic acid and heated at 170°C for 2 days. Purification using column chromatography with (PE/DCM;1/1) as eluent gave a white powder with 82% (1.8g) yield. ¹H NMR (300 MHz, Chloroform-*d*) δ 7.94 (s, 1H), 7.78 (s, 1H), 6.99 (s, 1H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 136.59, 131.26, 131.10, 130.73, 129.55, 128.96, 127.60, 125.84. HRMS (EI) m/z: Calc for C₈H₃ Br₃O₂S (M+), 399.7404; Found: 399.7402. **Mp**= 200-203°C. IR: 1306 cm⁻¹.

To a round bottom flask charged with 0.3g of 2-bromothiophene in 5ml of DCM, 1.58g (3.5eq) of m-CPBA dissolved in 15ml of DCM was added dropwise while stirring the mixture at 0°C. This mixture was allowed to come back to room temperature and was stirred for 17h. The reaction medium is diluted with DCM (15ml) and then washed with 1M NaHCO₃ solution, and 1M NaHSO₃ solution. The organic phase was dried over MgSO₄. The solvent was removed on a rotary evaporator, and purified with SiO₂ column chromatography using PE/DCM (6/4) as eluent to give a pale-yellow color powder with a 70% yield. ¹H NMR (300 MHz, Chloroform-*d*) δ 6.73 (dd, *J* = 3.1, 0.7 Hz, 1H), 6.39 (ddd, *J* = 7.0, 5.0, 0.6 Hz, 1H), 6.21 (ddd, *J* = 7.0, 1.6, 0.6 Hz, 1H), 4.67 – 4.60 (m, 1H), 4.31 (dd, *J* = 8.4, 3.0 Hz, 1H), 4.25 (t, *J* = 4.5 Hz, 1H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 132.30, 131.55, 128.44, 124.90, 62.09, 61.54, 54.04. HRMS (EI) m/z: Calc for C₈H₆ Br₂O₃S₂ (M+): 371.8125; Found: 371.8122. Mp= 166-168°C. IR: 1307, 1133, 1115.80, 1092 cm⁻¹.

Synthesis of 3-Cymix

This compound was synthesized using the same procedure than 2-bromothiophene but using 3-bromothiophene. A pale-yellow powder was obtained and isolated with a 70% yield. ¹H NMR (300 MHz, Chloroform-*d*) δ 6.77 (dd, J = 1.7, 0.6 Hz, 1H), 6.58 (dd, J = 4.8, 1.7 Hz, 1H), 4.72 (ddd, J = 8.0, 3.9, 1.7 Hz, 1H), 4.56 (ddt, J = 8.0, 3.9, 0.5 Hz, 1H), 4.33 (ddd, J = 5.1, 3.9, 1.5 Hz, 1H), 4.27 (dt, J = 3.9, 1.6 Hz, 1H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 135.50, 133.61, 129.62, 115.32, 70.54, 64.81, 64.29, 54.72. HRMS (EI) m/z: Calc for C₈H₆Br₂O₃S₂ (M+): 371.8125; Found: 371.8119. Mp= 112-114°C. IR: 1298, 1284, 1216, 11249, 1086 cm⁻¹.

Synthesis of 4-SO₂

To a 100 ml three-neck round-bottom flask fitted with a dropping funnel and a thermometer, 1.6 ml (35eq) of 30% H₂O₂ was added to the mixture of trifluoroacetic anhydride (4.23 ml,15eq) and sulfuric acid (0.25ml) and stirred in a NaCl-ice bath (-15 to -20 °C) so that the temperature was kept below 0°C. The solution was stirred for another 15 min, and 0.5 g (2.1 mmol) of 2,5-dibromothiophene in 5 ml of acetonitrile was added all at once. The reaction mixture was allowed to warm to room temperature with stirring for 3 h. Then the solution was transferred to a 250 ml erlenmeyer flask in a NaCl-ice bath, and 150 ml of saturated sodium carbonate solution was slowly added to bring the pH up to around 7. The solution was extracted with dichloromethane. The organic phases were combined and dried over MgSO₄. Solvents were removed on a rotary evaporator, to give a white-pale yellow powder with a yield of 69%. ¹H NMR (300 MHz, Chloroform-*d*) 6.87 (s, 1H).

Synthesis of 4-BtSO₂

Into a round bottom flask charged with stirring bar, 0.45g of 2,5-dibromothiophene was dissolved in 20 ml of acetic acid and heated at 170°C for 2 days and followed by TLC. Purification using column chromatography with (PE/DCM;1/1) as eluent gave a white powder (260 mg, 77%). ¹H NMR (300 MHz, Chloroform-*d*) δ 7.54 (d, J = 8.6 Hz, 1H), 7.45 (d, J = 8.6 Hz, 1H), 7.37 (s, 1H). ¹³C NMR (76 MHz, Chloroform-*d*) δ 138.11, 136.64, 134.89, 133.97, 128.28, 125.15, 118.15, 116.14. HRMS (EI) m/z: Calc for C₈H₃ Br₃O₂S (M+),399.7404; Found :399.7402. Mp= 175-177°C. IR: 1315, 1149.59 cm⁻¹.

Synthesis of 5-SO2

To a 100 ml three-neck round-bottom flask fitted with a dropping funnel and a thermometer, 2ml (35eq) of 30% H₂O₂ were added dropwise to a mixture of trifluoroacetic anhydride (5.2ml,15eq) and sulfuric acid (1ml) and stirred in a NaCl-ice bath (-15 to -20 °C) so that the temperature was kept below 0°C. The solution was stirred for another 15 min, and 1 g (2.5mmol) of 2,3,4,5-tetrabromothiophene in 5 ml of dichloromethane was added all at once. The reaction mixture was allowed to warm to room temperature with stirring for 3 h. Then the solution was transferred to a 250 ml erlenmeyer flask in a NaCl-ice bath, and 150 ml of saturated sodium carbonate solution was slowly added to bring the pH up to around 7. The solution was extracted with dichloromethane. The organic phases were combined and dried over MgSO₄. Solvents were removed on a rotary evaporator, to give a gray-brown powder with a yield of 80%. **HRMS** (EI) m/z: Calc for C₄ Br₄O₂S (M+): 427.6353; Found: 427.6345. ¹³C NMR (76 MHz, Chloroform-*d*) δ 128.55, 120.49. Mp=198-200°C

Figure S 1 : ¹H NMR spectrum of **1-SO**₂

Figure S 2 : ¹H NMR spectrum of **1-CySO**

Figure S 3: ¹³C NMR spectrum of **1-CySO**

Figure S 4: ¹H NMR spectrum of **1-BtSO**₂

Figure S 5: ¹³C NMR spectrum of **1-BtSO**₂

Figure S 6: ¹H NMR spectrum of **2-Cymix**

Figure S 7: ¹³C NMR spectrum of **2-Cymix**

Figure S 8: ¹H NMR spectrum of **3-Cymix**

Figure S 9: ¹³C NMR spectrum of **3-Cymix**

Figure S 11: ¹H NMR spectrum of **4-BtSO**₂

Figure S 12: ¹³C NMR spectrum of **4-BtSO**₂

Figure S 13: ¹³C NMR spectrum of **5-SO**₂

X-ray structures

X-ray single-crystal diffraction data were collected at 293K on a BRUKER-NONIUS KappaCCD diffractometer equipped with a graphite monochromator utilizing MoK α radiation(λ = 0.71073Å). The structures were solved by direct methods using SIR92 (Altomare et al.,1993) and the two refinements were performed on F² by full matrix least-squares techniques using SHELX-97 package (G.M. Sheldrick, 1998). All non-H atoms were refined anisotropically and the H atoms were included in the calculation without refinement. Absorption was corrected by Sadabs program (Sheldrick, Bruker, 2000).

X-ray structure of 1-CySO

Colorless plate (0.150 x 0.092 x 0.021 mm); C8 H4 Br4 O2 S2; Monoclinic, P 21/n; a = 11.4291(6) Å b = 19.1658(7) Å c = 11.4923(7) Å . Volume 2495.0(2) Å³; Z 8 Calculated density 2.747 g/cm³; Absorption coefficient 18.748 mm⁻¹; F(000)1920; Theta range for data collection from 4.516 to 78.446 deg. Limiting indices -13 <= h <= 14, -23 <= k <= 20, -14 <= l <= 12; Reflections collected / unique 14452 / 4919 [R(int) = 0.0940]; Completeness to theta = 68.000 98.0 %; Max. and min. transmission 1.00000 and 0.68195; Refinement method Full-matrix least-squares on F²; Data / restraints / parameters 4919 / 0 / 290; Goodness-of-fit on F² 1.070; Final R indices [I>2sigma(I)] R1 = 0.0692, wR2 = 0.1875 [3211 Fo]; R indices (all data) R1 = 0.1024, wR2 = 0.2105; Extinction coefficient 0.00074(10); Largest diff. peak and hole 1.018 and -1.323 e. Å⁻³.

X-ray structure of **2-Cymix**

Colorless plate (0.237 x 0.151 x 0.038 mm); Orthorhombic, P b c n; a = 25.0891(6) Å b = 9.7366(2) Å c = 9.1903(2) Å. Volume 2245.03(9) Å³; Z 8; Calculated density 2.213 mg/cm³; Absorption coefficient 12.534 mm⁻¹; F(000) 1440; Theta range for data collection from 3.523 to 76.203 deg.; Limiting indices -30<=h<=31, -10<=k<=12, -9<=l<=11; Reflections collected / unique 6496 / 2255 [R(int) = 0.0305]; Completeness to theta = 70.000 98.0 %; Max. and min. transmission 1.00000 and 0.35601; Refinement method Full-matrix least-squares on F²; Data / restraints / parameters 2255 / 0 / 136 Goodness-offit on F² 1.040; Final R indices [I>2sigma(I)] R1 = 0.0307, wR2 = 0.0782 [2063 Fo]; R indices (all data) R1 = 0.0340, wR2 = 0.0807; Largest diff. peak and hole 0.556 and -0.450 e.Å⁻³.

X-ray structure of **3-Cymix**

Colorless prism (0.313 x 0.298 x 0.157 mm); Monoclinic, P 21/n; Unit cell dimensions a = 7.8922(6) Å b = 10.1295(7) Å c= 14.0460(10) A; Volume 1107.29(14) Å³; Z 4; Calculated density 2.244 g/cm³; Absorption coefficient 12.707 mm⁻¹; F(000) 720; Theta range for data collection from 5.410 to 76.168 deg; Limiting indices -9<=h<=9, -11<=k<=12, -17<=l<=16; Reflections collected / unique 4877 / 2246 [R(int) = 0.0443]; Completeness to theta = 74.000 98.2 %; Max. and min. transmission 1.00000 and 0.44962; Refinement method Full-matrix least-squares on F²; Data / restraints / parameters 2246 / 0 / 136; Goodness-of-fit on F² 1.058; Final R indices [I>2sigma(I)] R1 = 0.0452, wR2 = 0.1210 [2043 Fo]; R indices (all data) R1 = 0.0489, wR2 = 0.1261; Largest diff. peak and hole 0.686 and -1.274 e. Å⁻³.

B- Theoretical Calculations

Computational details.

All calculated compounds have been optimized in gas phase by a DFT method with the B3LYP¹ hybrid functional since it is very reliable for geometry and thermochemistry and the 6-311G(2d,p) basis set. The Gaussian 09 software (revision D.01) has been used.² Normal modes frequencies have then been calculated to control the geometry as a minimum. The molecular orbitals pictures have been automatically generated by a homemade Python program, quchemreport, based on cclib.³⁴

¹ A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

² M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian ~09 Revision D.01*.

³ N. M. O'boyle, A. L. Tenderholt and K. M. Langner, *J. Comput. Chem.*, 2008, **29**, 839–845. ⁴ T. Cauchy and B. Da Mota, quchemreport. A python program for control quality and automatic generation of quantum chemistry results 2020.

1-3,4-Dibromothiophene 1

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	1
Formula	C4H2Br2S
Charge	0
Spin multiplicity	1
Monoisotopic mass	239.82440 Da
InChI	1S/C4H2Br2S/c5-3-1-7-2-4(3)6/h1-2H
SMILES	Brc1cscc1Br

b. Computational details

Software	Gaussian	(2009+D.01)
Computational method	DFT	
Functional	B3LYP	
Basis set name	6-311G(2d,p)	
Number of basis set functions	233	
Closed shell calculation	True	
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000153	0.000450
RMS Force value and threshold	0.000046	0.000300
Max Displacement value and threshold	0.000543	0.001800
RMS Displacement value and threshold	0.000240	0.001200
Job type: Frequency and thermochemical analysis		
Temperature	298.15 K	

None	
None	
15	['Singlet-A']
	None None 15

c. Results

Total molecular energy	-5700.14795 hartrees	
HOMO number	56	
LUMO+1 energies	-0.92 eV	
LUMO energies	-1.14 eV	
HOMO energies	-6.91 eV	
HOMO-1 energies	-6.95 eV	
CDFT indices: Electron Affinity	-0.0010 hartrees	
CDFT indices: Ionisation Potential	0.0119 hartrees	
CDFT indices: Electronegativity	0.0054 hartrees	
CDFT indices: Hardness	0.0129 hartrees	
CDFT indices: Electrophilicity	0.0011	
CDFT indices: Electron-flow	0.4202 e-	
Geometry optimization specific results		
Converged nuclear repulsion energy	842.69185 Hartrees	
Frequency and Thermochemistry specific results		
Enthalpy at 298.15 K	-5700.09353 Hartrees	
Gibbs free energy at 298.15 K	-5700.13530 Hartrees	;
Entropy at 298.15 K	0.00014 Hartrees	
Mean Mulliken atomic charge and standard deviation	-0.0000 e-	0.0930 e-
Atoms with negatives charges under the standard deviation	N°	Mulliken charge
	C 2	-0.116
	C 6	-0.116
Atoms with positives charges over the standard deviation	N°	Mulliken charge
	H 8	+0.095
	H 9	+0.095
	S 4	+0.138

Table. Selection of the most important condensed Fukui functions based on Mulliken charges.

Atom	atomic dual descriptor (f+ - f-)	atomic electrophilicity f+	atomic nucleophilicity f-
Br 1	-0.06	0.18	0.24
Br 7	-0.06	0.18	0.24
S 4	0.10	0.26	0.16

Figure 2: Representation of the HOMO from two points of view.

Table. Wost Int	ense (~ 50	KIII/III01/ III0	lecular vibrations in wavenumbers	
Freq	uencies I	ntensity	Symmetry	
	919	52	А	_
	797	58	А	

Table. Most intense (> 50 km/mol) molecular vibrations in wavenumbers

Figure 3: Representation of the LUMO from two points of view.

Figure 4: Representation of the F+ function from two points of view. The Blue color indicate the most electrophilic regions.

Table. Results concerning the calculated mono-electronic excitations.									
E.S.	Symmetry	nm	cm ⁻¹	f	R	Λ	d_{CT}	q_{CT}	Excitation description :
									initial OM - end-ing OM
									(% if 5%)
1	Singlet-A	253	39401	0.000	0.0	0.49	139.81	0.73	56-58(96);
2	Singlet-A	250	39985	0.000	0.0	0.60	127.62	0.65	55-58(96);
3	Singlet-A	237	42144	0.107	0.0	0.65	175.57	0.52	55-57(91); 56-60(6);
4	Singlet-A	231	43177	0.000	0.0	0.53	86.91	0.70	56-59(96);
5	Singlet-A	230	43330	0.000	0.0	0.55	118.72	0.67	55-59(95);
6	Singlet-A	228	43738	0.017	0.0	0.75	196.69	0.39	56-57(96);
7	Singlet-A	207	48181	0.000	0.0	0.22	281.60	0.93	54-57(99);
8	Singlet-A	206	48523	0.001	0.0	0.55	111.95	0.69	54-58(96);
9	Singlet-A	195	51216	0.002	0.0	0.31	280.92	0.87	53-57(98);
10	Singlet-A	194	51442	0.003	0.0	0.55	158.40	0.68	53-58(71); 54-59(24);
11	Singlet-A	185	53990	0.003	0.0	0.49	19.71	0.70	56-61(93);
12	Singlet-A	184	54101	0.000	0.0	0.55	23.97	0.65	51-59(6); 52-58(13); 55-61(78);
13	Singlet-A	184	54252	0.001	0.0	0.49	251.82	0.73	53-58(26); 54-59(67);
14	Singlet-A	179	55811	0.107	0.0	0.65	37.78	0.55	55-60(89);
15	Singlet-A	178	56141	0.000	0.0	0.58	31.54	0.63	52-58(83); 55-61(14);

Table. Converged cartesian atomic coordinates in Angstroms

Atom	Х	Y	\mathbf{Z}
Br	1.0984	1.7867	0.0000
С	-0.4651	0.7138	0.0000
С	-1.7179	1.2402	0.0000
S	-2.9183	-0.0000	-0.0000
С	-1.7179	-1.2402	0.0000
\mathbf{C}	-0.4651	-0.7138	0.0000
Br	1.0984	-1.7867	0.0000
Н	-1.9980	2.2798	0.0000
Н	-1.9980	-2.2798	0.0000

Figure 5: Representation of the F- function from two points of view. The Blue color indicate the most nucleophilic regions.

Figure 6: Representation of the Dual descriptor from two points of view. Electrophilic and nucleophilic regions correspond to blue and white surfaces.

Figure 7: Representations of the Molecular Electrostatic Potential mapped on the electron density (cutoff value of

0.002 e-/bohr3). On the left, red, blue and green regions correspond to negative values < -0.06 a.u., positive values >

0.08 a.u. and neutral values respectively. On the right, the scale is set automatically to highlight the minimum values in red and the maximum values in blues.

Figure 8: Calculated UV visible Absorption spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 9: Calculated Circular Dichroism spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 10: Representation of the Electron Density Difference (S1-S0) from two points of view.

Figure 11: Representation of the Electron Density Difference (S2-S0) from two points of view.

2- 3,4-dibromothiophene sulfoxide 1-SO a. Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	1-SO
Formula	C4H2Br2OS
Charge	0
Spin multiplicity	1
Monoisotopic mass	255.81931 Da
InChI	1S/C4H2Br2OS/c5-3-1-8(7)2-4(3)6/h1-2H
SMILES	c1(c(cs(=O)c1)Br)Br

b. Computational details

Software Computational method Functional Basis set name Number of basis set functions Closed shell calculation	Gaussian DFT B3LYP 6-311G(2d,p) 256 True	(2009+D.01)
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000104	0.000450
RMS Force value and threshold	0.000033	0.000300
Max Displacement value and threshold	0.001386	0.001800
RMS Displacement value and threshold	0.000477	0.001200
lob type: Frequency and thermochemical analysis		
Temperature	298.15 K	
Anharmonic effects	None	
Anharmonic effects	None	
Job type: Time-dependent calculation		
Number of calculated excited states and spin state	15	['Singlet-A']

c. Results

Total molecular energy	-5775.32020 hartrees	
HOMO number	60	
LUMO+1 energies	-1.35 eV	
LUMO energies	-2.67 eV	
HOMOenergies	-6.97 eV	
HOMO-1 energies	-7.28 eV	
CDFT indices: Electron Affinity	0.0011 hartrees	
CDFT indices: Ionisation Potential	0.0121 hartrees	
CDFT indices: Electronegativity	0.0066 hartrees	
CDFT indices: Hardness	0.0111 hartrees	
CDFT indices: Electrophilicity	0.0020	
CDFT indices: Electron-flow	0.5977 e-	
Geometry optimization specific results		
Converged nuclear repulsion energy	974.68476 Hartrees	
Frequency and Thermochemistry specific results		
Enthalpy at 298.15 K	-5775.26175 Hartrees	
Gibbs free energy at 298.15 K	-5775.30658 Hartrees	
Entropy at 298.15 K	0.00015 Hartrees	
Mean Mulliken atomic charge and standard deviation	0.0000 e-	0.2971 e-
Atoms with negatives charges under the standard deviation	N°	Mulliken charge
	O 10	-0.621
Atoms with positives charges over the standard deviation	N°	Mulliken charge
	S 4	+0.659

Table. Selection of the most important condensed Fukui functions based on Mulliken charges.

Figure 2: Representation of the HOMO from two points of view.

Figure 3: Representation of the LUMO from two points of view.

rable.	Most mense (> 3	50 km/mor) m	blecular vibrations in wavenumbers	
	Frequencies	Intensity	Symmetry	
	1267	123	А	
	1108	95	А	
	1055	112	А	
	894	78	А	
	815	52	А	

Figure 4: Representation of the F+ function from two points of view. The Blue color indicate the most electrophilic regions.

Figure 5: Representation of the F- function from two points of view. The Blue color indicate the most nucleophilic regions.

E.S.	Symmetry	nm	cm ⁻¹	f	R	Λ	d_{CT}	\mathbf{q}_C	Excitation description : initial
								Т	OM - end-ing OM (% if > 5%)
1	Singlet-A	379	26341	0.012	-0.0	0.54	194.25	0.70	60-61(97);
2	Singlet-A	324	30825	0.000	-0.1	0.74	120.04	0.49	59-61(91);
3	Singlet-A	270	36939	0.001	-0.0	0.44	132.20	0.71	58-61(88);
4	Singlet-A	258	38679	0.000	-0.0	0.52	199.66	0.58	57-61(41); 60-62(56);
5	Singlet-A	254	39236	0.001	-0.0	0.51	169.40	0.69	59-62(95);
6	Singlet-A	247	40451	0.000	0.1	0.44	37.99	0.76	56-61(91);
7	Singlet-A	241	41459	0.152	0.1	0.53	95.41	0.52	57-61(49); 60-62(37);
8	Singlet-A	231	43190	0.003	-0.0	0.33	278.48	0.86	55-61(98);
9	Singlet-A	230	43435	0.035	-0.3	0.54	296.38	0.61	60-63(86);
10	Singlet-A	221	45233	0.015	0.0	0.63	34.84	0.59	57-62(6); 59-63(84);
11	Singlet-A	211	47322	0.000	0.0	0.54	101.03	0.65	58-62(88);
12	Singlet-A	205	48552	0.015	0.3	0.58	39.42	0.62	57-62(84); 59-63(7);
13	Singlet-A	205	48746	0.079	-0.4	0.62	229.53	0.58	54-61(85);
14	Singlet-A	199	50020	0.004	0.0	0.39	342.82	0.77	60-64(95);
15	Singlet-A	192	51863	0.001	-0.3	0.55	60.50	0.60	55-62(45); 58-63(42); 59-64(6);

Table. Results concerning the calculated mono-electronic excitations.

Table. Converged cartesian atomic coordinates in Angstroms

Aton	n X	Y	Z	
(C -0.2173	3 -0.7361	-0.0036	
(C -0.2173	0.7358	-0.0043	
(C -1.4389	9 1.2693	-0.0528	
	S -2.6749	9 -0.0004	-0.3538	
(C -1.4389	9 -1.2697	-0.0511	
В	r 1.3798	8 1.7595	0.0232	
В	r 1.3795	5 -1.7595	0.0230	
I	H -1.7227	7 2.3085	-0.0831	
I	H -1.7222	2 -2.3090	-0.0818	
(O -3.8075	5 0.0012	0.6096	

Figure 6: Representation of the Dual descriptor from two points of view. Electrophilic and nucleophilic regions correspond to blue and white surfaces.

Figure 7: Representations of the Molecular Electrostatic Potential mapped on the electron density (cutoff value of

0.002 e-/bohr3). On the left, red, blue and green regions correspond to negative values < -0.06 a.u., positive values >

0.08 a.u. and neutral values respectively. On the right, the scale is set automatically to highlight the minimum values in red and the maximum values in blues.

Figure 8: Calculated UV visible Absorption spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 9: Calculated Circular Dichroism spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 10: Representation of the Electron Density Difference (S1-S0) from two points of view.

Figure 11: Representation of the Electron Density Difference (S2-S0) from two points of view.

3- 3,4-dibromothiophene sulfone 1-SO2 a. Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

1-SO2
C4H2Br2O2S
0
1
271.81422 Da
1S/C4H2Br2O2S/c5-3-1-9(7,8)2-4(3)6/h1-2H
C1(=CS(=O)(=O)C=C1Br)Br

b. Computational details

Software	Gaussian	(2009+D.01)
Computational method	DFT	
Functional	B3LYP	
Basis set name	6-311G(2d,p)	
Number of basis set functions	279	
Closed shell calculation	True	
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000081	0.000450
RMS Force value and threshold	0.000017	0.000300
Max Displacement value and threshold	0.000355	0.001800
RMS Displacement value and threshold	0.000084	0.001200
Job type: Frequency and thermochemical analysis		
Temperature	298.15 K	
Anharmonic effects	None	
Anharmonic effects	None	
Job type: Time-dependent calculation		
Number of calculated excited states and spin state	15	['Singlet-A']

-5850.55860 hartrees 64 -1.68 eV -3.01 eV -7.50 eV -8.36 eV	
0.0015 hartrees 0.0127 hartrees 0.0071 hartrees 0.0111 hartrees 0.0023 0.6379 e-	
1136.05341 Hartrees	
-5850.49421 Hartrees -5850.54054 Hartrees 0.00016 Hartrees	
0.0000 e- N° O 10	0.4076 e- Mulliken charge -0.561
N° S 4	-0.561 Mulliken charge +1.064
	-5850.55860 hartrees 64 -1.68 eV -3.01 eV -7.50 eV -8.36 eV 0.0015 hartrees 0.0127 hartrees 0.0021 hartrees 0.0023 0.6379 e- 1136.05341 Hartrees -5850.49421 Hartrees -5850.54054 Hartrees 0.00016 Hartrees 0.0000 e- N° O 10 O 11 N° S 4

Table. Selection of the most important condensed Fukui functions based on Mulliken charges.				
Atom	atomic dual descriptor (f+ - f-)	atomic electrophilicity f+	atomic nucleophilicity f-	
Br 7	-0.05	0.19	0.24	
Br 6	-0.05	0.19	0.24	
S 4	0.05	0.06	0.02	

Figure 2: Representation of the HOMO from two points of view.

Frequencies	Intensity	Symmetry
1587	51	А
1326	166	А
1253	164	А
1143	101	А
1031	77	А
929	107	А
806	53	А
484	66	А

Table. Most intense (> 50 km/mol) molecular vibrations in wavenumbers

Figure 3: Representation of the LUMO from two points of view.

Figure 4: Representation of the F+ function from two points of view. The Blue color indicate the most electrophilic regions.
	Table. Results concerning the calculated mono-electronic excitations.								
E.S.	Symmetry	nm	cm ⁻¹	f	R	Λ	d_{CT}	\mathbf{q}_C	Excitation description : initial
								Т	OM - end-ing OM (% if > 5%)
1	Singlet-A	321	31070	0.002	-0.0	0.79	100.72	0.43	64-
65	(98);								
2	Singlet-A	286	34855	0.000	0.0	0.42	123.77	0.81	62-65(96);
3	Singlet-A	262	38079	0.000	-0.0	0.52	163.34	0.71	64-66(98);
4	Singlet-A	261	38288	0.130	-0.0	0.66	77.47	0.64	63-65(94);
5	Singlet-A	245	40760	0.000	0.0	0.48	10.28	0.76	61-65(95);
6	Singlet-A	237	42124	0.001	-0.0	0.35	251.30	0.85	60-65(99);
7	Singlet-A	224	44483	0.002	-0.0	0.55	94.90	0.72	59-65(97);
8	Singlet-A	224	44517	0.002	0.0	0.49	15.36	0.73	58-65(91); 62-66(6);
9	Singlet-A	220	45344	0.000	-0.0	0.55	167.11	0.67	63-66(81); 64-67(16);
10	Singlet-A	215	46394	0.010	0.0	0.55	85.32	0.63	62-66(88);
11	Singlet-A	210	47484	0.004	0.0	0.50	247.05	0.65	57-65(85); 64-67(10);
12	Singlet-A	204	48781	0.001	0.0	0.54	225.03	0.62	57-65(11); 63-66(15); 64-67(72);
13	Singlet-A	199	50075	0.057	-0.0	0.68	84.21	0.55	56-65(92);
14	Singlet-A	193	51801	0.002	-0.0	0.58	58.23	0.64	60-66(85); 62-67(11);
15	Singlet-A	189	52810	0.024	0.0	0.55	245.49	0.67	61-66(93);

Table. Converged cartesian atomic coordinates in Angstroms

Atom	Х	Y	\mathbf{Z}	
С	-0.0330	0.7460	-0.0001	
С	-0.0331	-0.7462	0.0001	
С	-1.2438	-1.2896	0.0001	
S	-2.4871	0.0002	-0.0000	
С	-1.2435	1.2898	-0.0002	
\mathbf{Br}	1.5647	-1.7522	-0.0000	
\mathbf{Br}	1.5654	1.7519	0.0000	
Н	-1.5305	-2.3284	0.0001	
Н	-1.5301	2.3287	0.0001	
0	-3.2111	0.0003	1.2524	
0	-3.2113	0.0004	-1.2523	

Figure 5: Representation of the F- function from two points of view. The Blue color indicate the most nucleophilic regions.

Figure 6: Representation of the Dual descriptor from two points of view. Electrophilic and nucleophilic regions correspond to blue and white surfaces.

Figure 7: Representations of the Molecular Electrostatic Potential mapped on the electron density (cutoff value of

0.002 e-/bohr3). On the left, red, blue and green regions correspond to negative values < -0.06 a.u., positive values >

0.08 a.u. and neutral values respectively. On the right, the scale is set automatically to highlight the minimum values in red and the maximum values in blues.

Figure 8: Calculated UV visible Absorption spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 9: Calculated Circular Dichroism spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 10: Representation of the Electron Density Difference (S1-S0) from two points of view.

Figure 11: Representation of the Electron Density Difference (S2-S0) from two points of view.

4- Cycloadduct sulfoxide 1-CySO

a- Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	1-CySO
Formula	C8H4Br4O2S2
Charge	0
Spin multiplicity	1

b- Computational details

Software	Gaussian	(2009+D.01)
Computational method	DFT	
Functional	B3LYP	
Basis set name	6-311G(2d,p)	
Number of basis set functions	512	
Closed shell calculation	True	
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000234	0.000450
RMS Force value and threshold	0.000032	0.000300
Max Displacement value and threshold	0.000732	0.001800
RMS Displacement value and threshold	0.000207	0.001200
Job type: Frequency and thermochemical analysis		
Temperature	298.15 K	
Anharmonic effects	None	
Anharmonic effects	None	

Total molecular energy HOMO number LUMO+1 energies LUMO energies HOMO energies HOMO-1 energies

Geometry optimization specific results Converged nuclear repulsion energy

Frequency and Thermochemistry specific results Enthalpy at 298.15 K Gibbs free energy at 298.15 K Entropy at 298.15 K

-11550.68070 hartrees 120 -1.99 eV -2.65 eV -7.01 eV -7.15 eV

3626.70487 Hartrees

-11550.55883 Hartrees -11550.62387 Hartrees 0.00022 Hartrees

Figure 2: Representation of the HOMO from two points of view.

	wavenumbers						
Frequencies	Intensity	Symmetry					
1621	58	А					
1160	98	А					
1140	91	А					
1097	60	А					
1095	97	А					
856	53	А					

Table. Most intense (> 50 km/mol) molecular vibrations in

Atom	Х	Y	\mathbf{Z}	
С	-1.7734	-0.4679	0.1689	
С	-1.0008	-1.7278	0.4586	
S	-0.3669	-1.3669	2.2328	
С	0.1952	0.1883	1.2481	
С	-1.1008	0.6004	0.6009	
С	1.1155	-0.4764	0.1936	
С	0.3306	-1.7170	-0.3074	
С	1.4660	0.3532	-0.9999	
С	1.0803	-0.0848	-2.1896	
S	0.1007	-1.5995	-2.1859	
0	-1.5007	-1.0112	3.1112	
Н	0.6779	0.9305	1.8733	
0	0.8652	-2.7114	-2.8134	
Н	1.2573	0.3991	-3.1387	
\mathbf{Br}	2.3802	2.0072	-0.7642	
\mathbf{Br}	2.8383	-1.0230	1.1060	
Н	0.8919	-2.6423	-0.2049	
Н	-1.5611	-2.6556	0.4047	
Br	-3.4377	-0.5008	-0.7096	
\mathbf{Br}	-1.6036	2.4082	0.4505	

Table. Converged cartesian atomic coordinates in Angstroms

Figure 3: Representation of the LUMO from two points of view.

5- Cycloadduct 1-Cymix

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	1-Cymix
Formula	C8H4Br4O3S2
Charge	0
Spin multiplicity	1

b- Computational details

Software	Gaussian	(2009+D.01)
Computational method	DFT	
Functional	B3LYP	
Basis set name	6-311G(2d,p)	
Number of basis set functions	535	
Closed shell calculation	True	
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000127	0.000450
RMS Force value and threshold	0.000016	0.000300
Max Displacement value and threshold	0.001595	0.001800
RMS Displacement value and threshold	0.000354	0.001200
Job type: Frequency and thermochemical analysis		
Temperature	298.15 K	
Anharmonic effects	None	
Anharmonic effects	None	

Total molecular energy HOMO number LUMO+1 energies LUMO energies HOMO energies HOMO-1 energies Geometry optimization specific results Converged nuclear repulsion energy

Frequency and Thermochemistry specific results Enthalpy at 298.15 K Gibbs free energy at 298.15 ${\rm K}$ Entropy at 298.15 K

-11625.92075 hartrees 124 -2.08 eV -2.79 eV -6.99 eV -7.72 eV

3907.02077 Hartrees

-11625.79284 Hartrees -11625.85884 Hartrees 0.00022 Hartrees

Figure 2: Representation of the HOMO from two points of view.

	wav	enumbers
Frequencies	Intensity	Symmetry
1637	50	А
1338	130	А
1256	80	А
1160	111	А
1147	189	А
878	61	А

Table. Most intense (> 50 km/mol) molecular vibrations in

Atom	Х	Y	Z	
С	-1.7443	-0.3831	0.2962	
С	-0.9620	-1.5287	0.8800	
S	-0.3646	-0.7484	2.5403	
С	0.1974	0.5415	1.2229	
С	-1.0938	0.7672	0.4832	
С	1.1484	-0.3297	0.3680	
С	0.4187	-1.7020	0.2261	
С	1.4592	0.1943	-1.0083	
С	1.1575	-0.5685	-2.0471	
S	0.4367	-2.1210	-1.5729	
0	-1.5141	-0.2065	3.2916	
Н	0.6567	1.4177	1.6655	
0	1.3903	-3.1878	-1.7879	
0	-0.9075	-2.2315	-2.0963	
Н	1.3093	-0.3570	-3.0945	
\mathbf{Br}	2.2418	1.9113	-1.1984	
\mathbf{Br}	2.8927	-0.5529	1.3488	
Н	0.9796	-2.5091	0.6895	
Н	-1.5106	-2.4519	1.0338	
\mathbf{Br}	-3.4324	-0.6217	-0.4883	
\mathbf{Br}	-1.6399	2.4882	-0.0495	

Table. Converged cartesian atomic coordinates in Angstroms

Figure 3: Representation of the LUMO from two points of view.

6- Cycloadduct 1-Cy

a- Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name1-CyFormulaC8H4Br4O4S2Charge0Spin multiplicity1

b- Computational details

Software	Gaussian	(2009+D.01)
Computational method	DFT	
Functional	B3LYP	
Basis set name	6-311G(2d,p)	
Number of basis set functions	558	
Closed shell calculation	True	
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000070	0.000450
RMS Force value and threshold	0.000011	0.000300
Max Displacement value and threshold	0.001046	0.001800
RMS Displacement value and threshold	0.000202	0.001200
Job type: Frequency and thermochemical analysis		
Temperature	298.15 K	
Anharmonic effects	None	
Anharmonic effects	None	

Total molecular energy HOMO number LUMO+1 energies LUMO energies HOMO energies HOMO-1 energies

Geometry optimization specific results Converged nuclear repulsion energy

Frequency and Thermochemistry specific results Enthalpy at 298.15 K Gibbs free energy at 298.15 K Entropy at 298.15 K -11701.15995 hartrees 128 -1.83 eV -2.68 eV -7.50 eV -8.22 eV

4192.70369 Hartrees

-11701.02631 Hartrees -11701.09353 Hartrees 0.00023 Hartrees

Figure 2: Representation of the HOMO from two points of view.

wavenumbers				
Frequencies	Intensity	Symmetry		
1639	52	А	_	
1350	139	А		
1337	125	А		
1253	90	А		
1175	182	А		
1145	179	А		
882	71	А		
539	55	А		
			_	

Table. Most intense (> 50 km/mol) molecular vibrations in wavenumbers

Atom	Х	Y	\mathbf{Z}	
С	1.6890	-0.4547	-0.0549	
С	0.8982	-1.6654	-0.4326	
S	0.4449	-1.1460	-2.2109	
С	-0.1720	0.3803	-1.2244	
С	1.1059	0.6684	-0.5029	
С	-1.1705	-0.2834	-0.2403	
С	-0.5268	-1.6556	0.1459	
С	-1.3995	0.4967	1.0330	
С	-1.1749	-0.1090	2.1879	
S	-0.6069	-1.7770	1.9853	
0	-0.6098	-1.9793	-2.7399	
0	1.5862	-0.8097	-3.0261	
Н	-0.5799	1.1773	-1.8340	
0	-1.6567	-2.7040	2.3445	
0	0.7201	-1.9271	2.5441	
Н	-1.3090	0.2857	3.1833	
Br	-2.0045	2.2911	0.9313	
Br	-2.9607	-0.5133	-1.1007	
Н	-1.1062	-2.4956	-0.2257	
Н	1.4119	-2.6186	-0.3727	
\mathbf{Br}	3.3865	-0.6008	0.7315	
Br	1.8176	2.4091	-0.4361	

Table. Converged cartesian atomic coordinates in Angstroms

-

Figure 3: Representation of the LUMO from two points of view.

7-2-bromothiophene a. Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	2
Formula	C4H3BrS
Charge	0
Spin multiplicity	1
Monoisotopic mass	161.91388 Da
InChI	1S/C4H3BrS/c5-4-2-1-3-6-4/h1-3H
SMILES	c1ccsc1Br

b. Computational details

Software Computational method Functional Basis set name Number of basis set functions Closed shell calculation	Gaussian DFT B3LYP 6-311G(2d,p) 190 True	(2009+D.01)
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization Max Force value and threshold RMS Force value and threshold Max Displacement value and threshold RMS Displacement value and threshold	0.000375 0.000143 0.001759 0.000573	0.000450 0.000300 0.001800 0.001200
Job type: Frequency and thermochemical analysis Temperature Anharmonic effects Anharmonic effects	298.15 K None None	
Job type: Time-dependent calculation Number of calculated excited states and spin state	15	['Singlet-A']

Total molecular energy	-3126.61034 hartrees	
HOMO number	39	
LUMO+1 energies	-0.48 eV	
LUMO energies	-0.84 eV	
HOMO energies	-6.50 eV	
HOMO-1 energies	-7.27 eV	
CDFT indices: Electron Affinity	-0.0016 hartrees	
CDFT indices: Ionisation Potential	0.0116 hartrees	
CDFT indices: Electronegativity	0.0050 hartrees	
CDFT indices: Hardness	0.0131 hartrees	
CDFT indices: Electrophilicity	0.0010	
CDFT indices: Electron-flow	0.3815 e-	
Geometry optimization specific results		
Converged nuclear repulsion energy	448.65937 Hartrees	
Frequency and Thermochemistry specific results		
Enthalpy at 298.15 K	-3126.54734 Hartrees	
Gibbs free energy at 298.15 K	-3126.58449 Hartrees	
Entropy at 298.15 K	0.00012 Hartrees	
Mean Mulliken atomic charge and standard deviation	0.0000 e-	0.0825 e-
Atoms with negatives charges under the standard deviation	N°	Mulliken charge
	C 1	-0.105
	C 2	-0.092
	C 3	-0.087
Atoms with positives charges over the standard deviation	N°	Mulliken charge
	S 4	+0.114

Table. Selection of the most important condensed Fukui functions based on Mulliken charges.

Atom	atomic dual descriptor (f+ - f-)	atomic electrophilicity f+	atomic nucleophilicity f-
Br 9	-0.11	0.22	0.32
S 4	0.11	0.28	0.17

Figure 2: Representation of the HOMO from two points of view.

Figure 3: Representation of the LUMO from two points of view.

Figure 4: Representation of the F+ function from two points of view. The Blue color indicate the most electrophilic regions.

Figure 5: Representation of the F- function from two points of view. The Blue color indicate the most nucleophilic regions.

_

	Table. Results concerning the calculated mono-electronic excitations.								
E.S.	Symmetry	nm	cm ⁻¹	f	R	Λ	d_{CT}	\mathbf{q}_C	Excitation description : initial
								Т	OM - end-ing OM (% if > 5%)
									0 ()
1	Singlet-A	253	39517	0.000	0.0	0.53	214.47	0.70	39-
41	(99);								
2	Singlet-A	234	42556	0.145	-0.0	0.77	141.77	0.40	39-40(96);
3	Singlet-A	223	44698	0.000	0.0	0.43	173.50	0.76	39-42(97);
4	Singlet-A	216	46176	0.000	0.0	0.30	237.84	0.85	38-41(95);
5	Singlet-A	213	46823	0.067	-0.0	0.69	45.30	0.39	38-40(81); 39-43(16);
6	Singlet-A	201	49671	0.000	-0.0	0.43	120.10	0.77	38-42(96);
7	Singlet-A	194	51352	0.000	0.0	0.27	298.49	0.89	37-40(98);
8	Singlet-A	190	52606	0.005	0.0	0.58	98.89	0.66	37-41(97);
9	Singlet-A	178	56136	0.001	-0.0	0.34	159.12	0.80	39-44(97);
10	Singlet-A	173	57504	0.000	0.0	0.57	40.26	0.66	36-41(95);
11	Singlet-A	173	57651	0.033	-0.0	0.61	263.64	0.54	36-40(74); 39-43(15);
12	Singlet-A	168	59369	0.182	0.0	0.67	239.83	0.40	36-40(17); 38-40(8); 39-43(56);
13	Singlet-A	166	60089	0.005	-0.0	0.40	223.28	0.75	39-45(94);
14	Singlet-A	165	60525	0.010	0.0	0.36	322.90	0.78	37-42(88);
15	Singlet-A	161	62011	0.002	0.0	0.47	147.15	0.55	35-40(45); 38-44(51);

Table. Converged cartesian atomic coordinates in Angstroms

Atom	Х	Y	Z	
С	-0.8587	1.3596	0.0000	
С	-2.2631	1.1220	0.0000	
С	-2.5811	-0.2015	0.0000	
\mathbf{S}	-1.1673	-1.1995	0.0000	
\mathbf{C}	-0.1458	0.2011	0.0000	
Н	-3.0025	1.9111	-0.0000	
Н	-0.4014	2.3384	0.0000	
Н	-3.5584	-0.6567	0.0000	
\mathbf{Br}	1.7352	0.0203	0.0000	

Figure 6: Representation of the Dual descriptor from two points of view. Electrophilic and nucleophilic regions correspond to blue and white surfaces.

Figure 7: Representations of the Molecular Electrostatic Potential mapped on the electron density (cutoff value of

0.002 e-/bohr3). On the left, red, blue and green regions correspond to negative values < -0.06 a.u., positive values >

0.08 a.u. and neutral values respectively. On the right, the scale is set automatically to highlight the minimum values in red and the maximum values in blues.

Figure 8: Calculated UV visible Absorption spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 9: Calculated Circular Dichroism spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 10: Representation of the Electron Density Difference (S1-S0) from two points of view.

Figure 11: Representation of the Electron Density Difference (S2-S0) from two points of view.

8- 2-bromothiophene sulfoxide 2-SO a. Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name Formula Charge Spin multiplicity Monoisotopic mass	2-SO C4H3BrOS 0 1 177 90880 Da
Monoisotopic mass	177.90880 Da
InChl	1S/C4H3BrOS/c5-4-2-1-3-7(4)6/h1-3H/t7-/m0/s1
SMILES	c1(cccs1=O)Br

b. Computational details

Software Computational method Functional Basis set name Number of basis set functions Closed shell calculation	Gaussian DFT B3LYP 6-311G(2d,p) 213 True	(2009+D.01)
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000149	0.000450
RMS Force value and threshold	0.000039	0.000300
Max Displacement value and threshold	0.000625	0.001800
RMS Displacement value and threshold	0.000262	0.001200
Job type: Frequency and thermochemical analysis		
Temperature	298.15 K	
Anharmonic effects	None	
Anharmonic effects	None	
Job type: Time-dependent calculation		
Number of calculated excited states and spin state	15	['Singlet-A']

Total molecular energy HOMO number LUMO+1 energies LUMO energies HOMO energies HOMO-1 energies	-3201.78226 hartrees 43 -0.69 eV -2.38 eV -6.75 eV -6.96 eV	
CDFT indices: Electron Affinity CDFT indices: Ionisation Potential CDFT indices: Electronegativity CDFT indices: Hardness CDFT indices: Electrophilicity CDFT indices: Electron-flow	0.0005 hartrees 0.0120 hartrees 0.0063 hartrees 0.0115 hartrees 0.0017 0.5447 e-	
Geometry optimization specific results Converged nuclear repulsion energy	564.64445 Hartrees	
Frequency and Thermochemistry specific results Enthalpy at 298.15 K Gibbs free energy at 298.15 K Entropy at 298.15 K	-3201.71508 Hartrees -3201.75537 Hartrees 0.00014 Hartrees	
Mean Mulliken atomic charge and standard deviation Atoms with negatives charges under the standard deviation Atoms with positives charges over the standard deviation	-0.0000 e- N° O 10 N°	0.2923 e- Mulliken charge -0.625 Mulliken charge
Atoms with positives charges over the standard deviation	NA° S 5	Mulliken charge +0.642

Table. Selection of the most important condensed Fukui functions based on Mulliken charges.

Atom	atomic dual descriptor (f+ - f-)	atomic electrophilicity f+	atomic nucleophilicity f-
O 10	-0.12	0.08	0.20
Br 6	-0.06	0.21	0.27

Figure 2: Representation of the HOMO from two points of view.

ne.	wiost interise (>	50 KIII/III0I)	molecular vibrations in wavenumbers	
	Frequencies	Intensity	Symmetry	
	1114	52	А	
	1095	86	А	
	702	60	А	

Table. Most intense (> 50 km/mol) molecular vibrations in wavenumbers

Figure 3: Representation of the LUMO from two points of view.

Figure 4: Representation of the F+ function from two points of view. The Blue color indicate the most electrophilic regions.

	Table. Results concerning the calculated mono-electronic excitations.								
E.S.	Symmetry	nm	cm ⁻¹	f	R	Λ	d_{CT}	\mathbf{q}_C	Excitation description : initial
								Т	OM - end-ing OM (% if > 5%)
1	Singlet-A	372	26813	0.011	7.0	0.55	212.13	0.68	43-
44(96);								
2	Singlet-A	323	30872	0.039	-14.2	0.72	117.23	0.47	41-44(6); 42-44(89);
3	Singlet-A	269	37132	0.030	13.6	0.49	195.64	0.71	41-44(89);
4	Singlet-A	243	41072	0.014	11.4	0.41	275.67	0.76	42-45(14); 43-45(82);
5	Singlet-A	239	41777	0.001	3.9	0.51	221.17	0.69	42-45(83); 43-45(14);
6	Singlet-A	233	42806	0.003	-10.9	0.37	271.77	0.82	40-44(95);
7	Singlet-A	218	45858	0.038	5.1	0.54	190.18	0.56	39-44(8); 43-46(77);
8	Singlet-A	212	46980	0.004	-2.4	0.66	137.66	0.44	39-44(35); 42-46(47); 43-46(11);
9	Singlet-A	199	50095	0.028	0.7	0.63	139.50	0.40	38-44(8); 39-44(43); 42-46(33);
10	Singlet-A	194	51381	0.033	5.7	0.51	213.99	0.62	41-45(82);
11	Singlet-A	183	54540	0.032	10.7	0.63	200.83	0.43	38-44(66); 41-46(11); 42-48(7);
12	Singlet-A	181	54948	0.005	-0.2	0.55	82.45	0.65	40-45(86);
13	Singlet-A	179	55615	0.017	-16.2	0.41	340.38	0.65	41-46(15); 43-47(60); 43-48(7);
43-4	9(6);								
14	Singlet-A	177	56265	0.001	-12.7	0.50	148.15	0.61	41-46(9); 43-48(82);
15	Singlet-A	175	57118	0.014	-12.9	0.50	195.46	0.51	41-46(42); 42-48(10); 43-49(28);

Table.	Converged	cartesian	atomic	coordinates	in	Angstroms

Atom	Х	Y	Z	
С	0.0266	0.4433	0.0296	
С	-0.5456	1.6487	0.1316	
С	-2.0042	1.5830	0.1138	
\mathbf{C}	-2.5006	0.3448	-0.0019	
S	-1.2032	-0.8390	-0.3690	
\mathbf{Br}	1.8538	0.0144	-0.0047	
Н	-2.6141	2.4763	0.1738	
Н	0.0008	2.5795	0.2065	
Н	-3.5300	0.0280	-0.0637	
0	-1.1684	-2.0351	0.5141	

Figure 5: Representation of the F- function from two points of view. The Blue color indicate the most nucleophilic regions.

Figure 6: Representation of the Dual descriptor from two points of view. Electrophilic and nucleophilic regions correspond to blue and white surfaces.

Figure 7: Representations of the Molecular Electrostatic Potential mapped on the electron density (cutoff value of

0.002 e-/bohr3). On the left, red, blue and green regions correspond to negative values < -0.06 a.u., positive values >

0.08 a.u. and neutral values respectively. On the right, the scale is set automatically to highlight the minimum values in red and the maximum values in blues.

Figure 8: Calculated UV visible Absorption spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 9: Calculated Circular Dichroism spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 10: Representation of the Electron Density Difference (S1-S0) from two points of view.

Figure 11: Representation of the Electron Density Difference (S2-S0) from two points of view.

9- 2-bromothiophene sulfone 2-SO2 a.Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	2-SO2
Formula	C4H3BrO2S
Charge	0
Spin multiplicity	1
Monoisotopic mass	193.90371 Da
InChI	1S/C4H3BrO2S/c5-4-2-1-3-8(4,6)7/h1-3H
SMILES	S1(=O)(=O)C(=CC=C1)Br

b. Computational details

Software Computational method Functional Basis set name Number of basis set functions Closed shell calculation	Gaussian DFT B3LYP 6-311G(2d,p) 236 True	(2009+D.01)
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000200	0.000450
RMS Force value and threshold	0.000037	0.000300
Max Displacement value and threshold	0.001677	0.001800
RMS Displacement value and threshold	0.000427	0.001200
Job type: Frequency and thermochemical analysis		
Temperature	298.15 K	
Anharmonic effects	None	
Anharmonic effects	None	
Job type: Time-dependent calculation		
Number of calculated excited states and spin state	15	['Singlet-A']

Total molecular energy HOMO number LUMO+1 energies LUMO energies HOMO energies HOMO-1 energies	-3277.02314 hartrees 47 -0.92 eV -2.72 eV -7.25 eV -8.30 eV	
CDFT indices: Electron Affinity	0.0010 hartrees	
CDFT indices: Ionisation Potential CDFT indices: Electronegativity CDFT indices: Hardness CDFT indices: Electrophilicity CDFT indices: Electron-flow	0.0125 hartrees 0.0068 hartrees 0.0116 hartrees 0.0020 0.5844 e-	
Geometry optimization specific results Converged nuclear repulsion energy	706.02614 Hartrees	
Frequency and Thermochemistry specific results Enthalpy at 298.15 K Gibbs free energy at 298.15 K Entropy at 298.15 K	-3276.94987 Hartrees -3276.99167 Hartrees 0.00014 Hartrees	
Mean Mulliken atomic charge and standard deviation Atoms with negatives charges under the standard deviation	-0.0000 e- N° O 11	0.4063 e- Mulliken charge -0.564
Atoms with positives charges over the standard deviation	N° S 1	-0.304 Mulliken charge +1.060

Table. Selection of the most important condensed Fukui functions based on Mulliken charges.

Figure 2: Representation of the HOMO from two points of view.

wiost interise (~	30 km/mor	molecular vibrations in wavenumbers	
Frequencies	Intensity	Symmetry	
1333	167	А	
1150	134	А	
697	65	А	
	Frequencies 1333 1150 697	Frequencies Intensity 1333 167 1150 134 697 65	FrequenciesIntensitySymmetry1333167A1150134A69765A

Table. Most intense (> 50 km/mol) molecular vibrations in wavenumbers

Table. Results concerning the calculated mono-electronic excitations.									
E.S.	Symmetry	nm	cm ⁻¹	f	R	Λ	d_{CT}	\mathbf{q}_C	Excitation description : initial
								Т	OM - end-ing OM (% if > 5%)
1	Singlet-A	315	31658	0.070	0.1	0.79	142.13	0.43	47-
48	(97);								
2	Singlet-A	279	35838	0.000	-0.1	0.47	204.73	0.76	46-48(96);
3	Singlet-A	238	41907	0.000	0.1	0.52	197.43	0.68	47-49(95);
4	Singlet-A	236	42254	0.047	0.0	0.59	213.14	0.65	45-48(90);
5	Singlet-A	233	42888	0.001	-0.4	0.44	201.10	0.75	43-48(92);
6	Singlet-A	230	43473	0.036	0.3	0.50	219.23	0.75	44-48(91);
7	Singlet-A	206	48435	0.004	-0.0	0.50	210.65	0.74	42-48(96);
8	Singlet-A	197	50531	0.014	0.0	0.60	155.45	0.55	41-48(39); 46-49(53);
9	Singlet-A	194	51329	0.028	0.1	0.62	164.20	0.55	41-48(50); 46-49(40);
10	Singlet-A	181	55039	0.001	0.0	0.32	236.22	0.81	44-49(11); 45-49(78); 47-51(7);
11	Singlet-A	178	55909	0.000	-0.3	0.40	133.27	0.69	44-49(11); 45-49(15); 47-51(70);
12	Singlet-A	176	56553	0.016	0.2	0.77	187.91	0.38	40-48(42); 47-50(50);
13	Singlet-A	175	56892	0.001	0.3	0.45	148.86	0.69	44-49(72); 47-51(20);
14	Singlet-A	175	57067	0.026	-0.4	0.52	154.29	0.67	43-49(92);
15	Singlet-A	165	60510	0.001	0.1	0.41	211.53	0.70	47-52(67): 47-53(24):

Figure 3: Representation of the LUMO from two points of view.

Figure 4: Representation of the F+ function from two points of view. The Blue color indicate the most electrophilic regions.

Atom	Х	Y	\mathbf{Z}	
S	-1.1563	-0.6883	0.0002	
С	0.1831	0.5467	-0.0011	
С	-0.3277	1.7734	-0.0001	
С	-1.8067	1.7961	0.0004	
С	-2.3953	0.6039	0.0013	
Br	1.9639	-0.0150	-0.0003	
0	-1.1619	-1.4088	1.2536	
Н	-2.3483	2.7331	-0.0005	
Н	0.2619	2.6793	0.0008	
Н	-3.4422	0.3457	-0.0002	
0	-1.1665	-1.4088	-1.2533	

Table. Converged cartesian atomic coordinates in Angstroms

Figure 5: Representation of the F- function from two points of view. The Blue color indicate the most nucleophilic regions.

Figure 6: Representation of the Dual descriptor from two points of view. Electrophilic and nucleophilic regions correspond to blue and white surfaces.

Figure 7: Representations of the Molecular Electrostatic Potential mapped on the electron density (cutoff value of

0.002 e-/bohr3). On the left, red, blue and green regions correspond to negative values < -0.06 a.u., positive values >

0.08 a.u. and neutral values respectively. On the right, the scale is set automatically to highlight the minimum values in red and the maximum values in blues.

Figure 8: Calculated UV visible Absorption spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 9: Calculated Circular Dichroism spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 10: Representation of the Electron Density Difference (S1-S0) from two points of view.

Figure 11: Representation of the Electron Density Difference (S2-S0) from two points of view.

10- Cycloadduct 2-CySO

a- Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	2-CySO
Formula	C8H6Br2O2S2
Charge	0
Spin multiplicity	1

Gaussian DFT B3LYP 6-311G(2d,p) 426 True	(2009+D.01)
1e-08	1e-06
1e-06	
0.000100	0.000450
0.000021	0.000300
0.001761	0.001800
0.000407	0.001200
298.15 K	
None	
None	
	Gaussian DFT B3LYP 6-311G(2d,p) 426 True 1e-08 1e-06 0.000100 0.000021 0.0001761 0.000407 298.15 K None None

Geometry optimization specific results Converged nuclear repulsion energy Frequency and Thermochemistry specific results Enthalpy at 298.15 K Gibbs free energy at 298.15 K Entropy at 298.15 K

-6403.61982 hartrees 86 -1.44 eV -1.90 eV -6.84 eV -7.15 eV

1981.64527 Hartrees

-6403.48045 Hartrees -6403.53669 Hartrees 0.00019 Hartrees

Figure 2: Representation of the HOMO from two points of view.

ruble. Wost interibe (* 56 kill/inter) interedular vibrations int			
wavenumbers			
Frequencies	Intensity	Symmetry	
1141	57	А	
1124	71	А	
1086	117	А	

Table.	Most intense	(> 50	km/mol)	molecular	vibrations in	
		wa	venumbe	rs		

Х	Y	Z	
-2.6405	1.3811	0.0672	
-0.9476	2.0292	0.6841	
-0.0065	1.5065	-0.4096	
-0.4374	0.0529	-0.7306	
-1.5982	-0.2337	0.2595	
1.8010	1.5484	0.1177	
1.8776	-0.2543	-0.1948	
0.7540	-0.8412	-0.5801	
-1.2217	-0.0639	1.6900	
-0.8677	1.2048	1.9292	
3.5491	-1.0980	0.0788	
-2.5979	-1.8515	-0.1558	
2.5544	2.2763	-0.9406	
-2.8280	1.7100	-1.3660	
0.6766	-1.9038	-0.7788	
-0.8544	-0.0105	-1.7388	
-0.0191	2.1415	-1.2944	
-0.9505	3.1077	0.8119	
-0.5738	1.6027	2.8909	
-1.2613	-0.8677	2.4109	
	$\begin{array}{c} X \\ \hline -2.6405 \\ -0.9476 \\ -0.0065 \\ -0.4374 \\ -1.5982 \\ 1.8010 \\ 1.8776 \\ 0.7540 \\ -1.2217 \\ -0.8677 \\ 3.5491 \\ -2.5979 \\ 2.5544 \\ -2.8280 \\ 0.6766 \\ -0.8544 \\ -0.0191 \\ -0.9505 \\ -0.5738 \\ -1.2613 \end{array}$	$\begin{array}{c cccc} X & Y \\ \hline 2.6405 & 1.3811 \\ \hline 0.9476 & 2.0292 \\ \hline 0.0065 & 1.5065 \\ \hline 0.4374 & 0.0529 \\ \hline 1.5982 & -0.2337 \\ \hline 1.8010 & 1.5484 \\ \hline 1.8776 & -0.2543 \\ \hline 0.7540 & -0.8412 \\ \hline -1.2217 & -0.0639 \\ \hline 0.8677 & 1.2048 \\ \hline 3.5491 & -1.0980 \\ \hline 2.5979 & -1.8515 \\ \hline 2.5544 & 2.2763 \\ \hline 2.8280 & 1.7100 \\ \hline 0.6766 & -1.9038 \\ \hline -0.8544 & -0.0105 \\ \hline -0.0191 & 2.1415 \\ \hline -0.9505 & 3.1077 \\ \hline -0.5738 & 1.6027 \\ \hline -1.2613 & -0.8677 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table. Converged cartesian atomic coordinates in Angstroms

Figure 3: Representation of the LUMO from two points of view.

11- Cycloadduct 2-Cymix a. Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	2-Cymix
Formula	C8H6Br2O3S2
Charge	0
Spin multiplicity	1
Monoisotopic mass	371.81251 Da
InChI	1S/C8H6Br2O3S2/c9-6-3-4-7(15(6,12)13)5-1-2-8(4,10)14(5)11/h1-5,7H/t4-
,5+,7+,8-,14-/m1/s1	SMILES
	C1(=C[C@@H]2[C@@H]([C@@H]3C=C[C@]2([S@@]3=O)Br)S1(=O)=O)Br

Software Computational method Functional Basis set name Number of basis set functions Closed shell calculation Requested SCF convergence on RMS and Max density matrix Requested SCF convergence on energy	Gaussian DFT B3LYP 6-311G(2d,p) 449 True 1e-08 1e-06	(2009+D.01) 1e-06
Job type: Geometry optimization Max Force value and threshold RMS Force value and threshold Max Displacement value and threshold RMS Displacement value and threshold	0.000103 0.000016 0.001400 0.000237	0.000450 0.000300 0.001800 0.001200

c. Results

Total molecular energy	-6478.86581 hartrees		
HOMO number	90		
LUMO+1 energies	-1.41 eV		
LUMO energies	-1.90 eV		
HOMO energies	-7.24 eV		
HOMO-1 energies	-7.85 eV		

Geometry optimization specific results		
Converged nuclear repulsion energy	2201.37154 Hartre	es
Mean Mulliken atomic charge and standard deviation	-0.0000 e-	0.3681 e-
Atoms with negatives charges under the standard deviation	N°	Mulliken charge
	O 21	-0.616
	O 20	-0.585
	O 19	-0.561
Atoms with positives charges over the standard deviation	N°	Mulliken charge
	S 16	+0.709
	S 15	+1.068

Figure 2: Representation of the HOMO from two points of view.

Atom	x	v	Z	
	1 7091	-0.4250	-0.9574	
C	1.7921	-0.4559	-0.2374	
U U	0.6220	-0.9834	-0.5446	
H	0.4757	-2.0526	-0.6355	
C	-0.5379	-0.0462	-0.7530	
Н	-0.9481	-0.1608	-1.7582	
С	-0.0748	1.4162	-0.5322	
Н	-0.1845	2.0107	-1.4364	
С	-0.9178	1.9938	0.6125	
Н	-0.8575	3.0723	0.7191	
С	-0.8384	1.1902	1.8696	
Н	-0.4693	1.5919	2.8019	
С	-1.2772	-0.0585	1.6766	
Н	-1.3356	-0.8424	2.4178	
С	-1.6990	-0.2419	0.2603	
S	1.7363	1.3627	-0.2014	
S	-2.6599	1.4192	0.0569	
Br	3,4335	-1.2947	0.0684	
Br	-2 7829	1 8165	-0 1005	
0	2 4462	1 9056	-1 3392	
0	2.4402	1.8362	1 1 3 4 2	
0	-2.0330	1.7981	-1 3780	
0	2.0710	1.7201	1.5760	

Table. Converged cartesian atomic coordinates in Angstroms

Figure 3: Representation of the LUMO from two points of view.

Figure 4: Representations of the Molecular Electrostatic Potential mapped on the electron density (cutoff value of

0.002 e-/bohr3). On the left, red, blue and green regions correspond to negative values < -0.06 a.u., positive values >

0.08 a.u. and neutral values respectively. On the right, the scale is set automatically to highlight the minimum values in red and the maximum values in blues.

12- Cycloadduct 2-Cy

a- Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	2-Cy
Formula	C8H6Br2O4S2
Charge	0
Spin multiplicity	1

Software	Gaussian	(2009+D.01)
Computational method	DFT	
Functional	B3LYP	
Basis set name	6-311G(2d,p)	
Number of basis set functions	472	
Closed shell calculation	True	
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000060	0.000450
RMS Force value and threshold	0.000010	0.000300
Max Displacement value and threshold	0.001217	0.001800
RMS Displacement value and threshold	0.000250	0.001200

-6554.09647 hartrees 94 -1.54 eV -1.81 eV -7.91 eV -8.19 eV

Geometry optimization specific results Converged nuclear repulsion energy

2411.77097 Hartrees

Atom	Х	Y	Ζ
S	2.5299	-1.2080	-0.1339
С	0.8826	-1.9170	0.5029
С	-0.0121	-1.3402	-0.6098
С	0.3672	0.1621	-0.7937
\mathbf{C}	1.5427	0.4097	0.1982
S	-1.8172	-1.3920	-0.2241
\mathbf{C}	-1.9693	0.4006	-0.2210
\mathbf{C}	-0.8392	1.0211	-0.5159
С	1.1249	0.1470	1.5999
С	0.7614	-1.1303	1.7642
Br	-3.6504	1.1553	0.1471
Br	2.5327	2.0404	-0.1232
0	-2.5227	-1.9356	-1.3634
0	-2.0577	-1.9253	1.1004
0	2.6933	-1.4411	-1.5544
Н	-0.7552	2.0987	-0.5792
Н	0.7286	0.3374	-1.8079
Н	0.0910	-1.8982	-1.5366
Н	0.8793	-2.9990	0.5843
Н	0.4501	-1.5774	2.6960
H	1.1693	0.9005	2.3721
0	3.6375	-1.4017	0.7689

Table. Converged cartesian atomic coordinates in Angstrom

Figure 2: Representation of the HOMO from two points of view.

Figure 3: Representation of the LUMO from two points of view.

13-3-bromothiophene 3

a- Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	3
Formula	C4H3BrS
Charge	0
Spin multiplicity	1

b- Computational details

Software	Gaussian	(2009+D.01)
Computational method	DFT	
Functional	B3LYP	
Basis set name	6-311G(2d,p)	
Number of basis set functions	190	
Closed shell calculation	True	
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000149	0.000450
RMS Force value and threshold	0.000043	0.000300
Max Displacement value and threshold	0.000711	0.001800
RMS Displacement value and threshold	0.000210	0.001200
Job type: Frequency and thermochemical analysis		
Temperature	298.15 K	
Anharmonic effects	None	
Anharmonic effects	None	

Job type: Time-dependent calculation Number of calculated excited states and spin state

15['Singlet-A']

Geometry optimization specific results Converged nuclear repulsion energy

Frequency and Thermochemistry specific results Enthalpy at 298.15 K Gibbs free energy at 298.15 K Entropy at 298.15 K -3126.61469 hartrees 39 -0.49 eV -0.86 eV -6.67 eV -7.16 eV

437.62442 Hartrees

-3126.55174 Hartrees -3126.58884 Hartrees 0.00012 Hartrees

Figure 2: Representation of the HOMO from two points of view.

 Table. Most intense (> 50 km/mol) molecular vibrations in avenumbers

 Frequencies
 Intensity
 Symmetry

 780
 72
 A

	Table. Results concerning the calculated mono-electronic excitations.								
E.S.	Symmetry	nm	cm ⁻	l f	R	Λ	d_{CT}	\mathbf{q}_C	Excitation description : initial
								Т	OM - end-ing OM (% if > 5%)
1	Singlet-A	246	40604	0.000	0.0	0.59	64.90	0.67	39-
41(99);								
2	Singlet-A	231	43243	0.078	-0.0	0.78	223.46	0.41	38-40(6); 39-40(86);
3	Singlet-A	222	45044	0.000	-0.0	0.40	182.77	0.80	38-41(98);
4	Singlet-A	211	47310	0.064	-0.0	0.80	63.68	0.36	38-40(82); 39-40(8);
5	Singlet-A	208	48037	0.001	0.0	0.48	172.46	0.73	39-42(97);
6	Singlet-A	197	50648	0.001	0.0	0.25	332.82	0.91	37-40(98);
7	Singlet-A	194	51325	0.002	-0.0	0.48	119.59	0.72	38-42(96);
8	Singlet-A	193	51743	0.002	-0.0	0.52	219.07	0.72	37-41(95);
9	Singlet-A	175	56870	0.153	-0.0	0.61	202.50	0.43	36-40(37); 39-43(51);
10	Singlet-A	173	57715	0.001	-0.0	0.56	56.08	0.62	36-41(92);
11	Singlet-A	172	57876	0.072	-0.0	0.59	222.13	0.45	36-40(53); 38-43(12); 39-43(28);
12	Singlet-A	170	58553	0.001	0.0	0.39	227.37	0.76	39-44(85); 39-45(7);
13	Singlet-A	162	61440	0.006	0.0	0.42	241.08	0.69	39-44(7); 39-45(85);
14	Singlet-A	161	61819	0.002	0.0	0.46	124.30	0.57	35-40(25); 38-44(69);
15	Singlet-A	160	62238	0.118	-0.0	0.43	321.71	0.64	37-42(64); 38-43(18);

Table. Converged cartesian atomic coordinates in Angstroms

Atom	Х	Y	Z	
Br	-1.8732	-0.0499	-0.0000	
\mathbf{C}	0.0286	0.0585	0.0000	
С	0.8356	-1.0348	0.0000	
S	2.4969	-0.5590	-0.0000	
\mathbf{C}	2.0732	1.1171	0.0000	
\mathbf{C}	0.7247	1.2981	0.0000	
Н	0.2374	2.2619	-0.0000	
Н	0.5565	-2.0747	0.0000	
Н	2.8459	1.8687	0.0000	

Figure 3: Representation of the LUMO from two points of view.

Figure 4: Calculated UV visible Absorption spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 5: Calculated Circular Dichroism spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 6: Representation of the Electron Density Difference (S1-S0) from two points of view.

Figure 7: Representation of the Electron Density Difference (S2-S0) from two points of view.

14- 3-bromothiophene sulfoxyde 3-SO

a- Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	3-SO
Formula	C4H3BrOS
Charge	0
Spin multiplicity	1

Software Computational method Functional Basis set name Number of basis set functions Closed shell calculation Requested SCF convergence on RMS and Max density matrix	Gaussian DFT B3LYP 6-311G(2d,p) 213 True 1e-08	(2009+D.01) 1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization Max Force value and threshold RMS Force value and threshold Max Displacement value and threshold RMS Displacement value and threshold	0.000191 0.000045 0.001031 0.000348	0.000450 0.000300 0.001800 0.001200
Job type: Frequency and thermochemical analysis Temperature Anharmonic effects Anharmonic effects	298.15 K None None	
Job type: Time-dependent calculation Number of calculated excited states and spin state A']	15	['Singlet-

Total molecular energy HOMO number LUMO+1 energies LUMO energies HOMO energies HOMO-1 energies Geometry optimization specific results

Converged nuclear repulsion energy

Frequency and Thermochemistry specific results Enthalpy at 298.15 K Gibbs free energy at 298.15 K Entropy at 298.15 K -3201.78642 hartrees 43 -0.85 eV -2.44 eV -6.75 eV -7.26 eV

541.86637 Hartrees

-3201.71938 Hartrees -3201.75952 Hartrees 0.00013 Hartrees

Figure 2: Representation of the HOMO from two points of view.

Figure 3: Representation of the LUMO from two points of view.

Table. Most intense (> 50 km/mol) molecular vibrations in

	waver	numbers
Frequencies	Intensity	Symmetry
1112	54	А
1092	72	А
1037	58	А
874	55	А
796	58	А

Table. Results concerning the calculated mono-electronic excitations.

E.S.	Symmetry	nm	cm ⁻	1 f	R	Λ	d_{CT}	\mathbf{q}_C	Excitation description : initial
								Т	OM - end-ing OM (% if > 5%)
1	Singlet-A	377	26524	0.014	0.2	0.55	195.31	0.68	43-
44(9	96);								
2	Singlet-A	312	32033	0.006	-10.8	0.73	96.97	0.48	41-44(8); 42-44(88);
3	Singlet-A	258	38610	0.013	1.8	0.51	107.03	0.67	41-44(86); 42-44(7);
4	Singlet-A	245	40685	0.016	-21.8	0.46	391.46	0.66	39-44(6); 42-45(7); 43-45(80);
5	Singlet-A	236	42229	0.003	8.5	0.43	296.49	0.76	39-44(16); 40-44(80);
6	Singlet-A	232	43085	0.001	-3.7	0.52	214.91	0.62	39-44(9); 42-45(82);
7	Singlet-A	222	44892	0.110	-6.4	0.54	52.08	0.49	39-44(50); 40-44(12); 43-45(12);
43-4	46(8);								
8	Singlet-A	212	47122	0.050	-8.9	0.52	209.08	0.61	39-44(8); 43-46(83);
9	Singlet-A	196	50954	0.017	2.8	0.57	177.09	0.50	41-45(37); 42-46(46);
10	Singlet-A	192	51963	0.047	-2.8	0.55	131.48	0.50	39-45(6); 40-45(24); 41-45(31);
42-4	6(25);								
11	Singlet-A	187	53245	0.030	4.2	0.53	15.22	0.60	40-45(72); 41-45(12);
12	Singlet-A	182	54843	0.006	-10.6	0.47	186.06	0.63	39-45(17); 43-47(64);
13	Singlet-A	180	55419	0.005	-1.3	0.50	170.04	0.54	38-44(11); 39-45(49); 41-45(6);
43-42	7(18);								
14	Singlet-A	176	56566	0.019	-10.0	0.54	113.58	0.49	38-44(31); 41-46(10); 43-48(38);
15	Singlet-A	175	57073	0.024	46.5	0.49	141.04	0.49	38-44(10); 39-45(11); 41-46(16);
43-43	8(43);								

Figure 4: Calculated UV visible Absorption spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Atom	Х	Y	\mathbf{Z}	
С	-1.6035	1.4144	0.0362	
С	-0.2672	1.4257	0.0776	
С	0.3081	0.0848	0.0158	
С	-0.5790	-0.9082	-0.0797	
S	-2.2183	-0.2260	-0.3542	
\mathbf{Br}	2.1985	-0.1474	0.0271	
Н	0.3498	2.3131	0.1256	
Н	-0.4159	-1.9694	-0.1688	
Н	-2.2882	2.2483	0.0411	
0	-3.2814	-0.7397	0.5527	

Table. Converged cartesian atomic coordinates in Angstroms

Figure 5: Calculated Circular Dichroism spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 6: Representation of the Electron Density Difference (S1-S0) from two points of view.

Figure 7: Representation of the Electron Density Difference (S2-S0) from two points of view.

15-3-bromothiophene sulfone 3-SO2

a- Descrption

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	3-SO2
Formula	C4H3BrO2S
Charge	0
Spin multiplicity	1

Software Computational method Functional Basis set name Number of basis set functions Closed shell calculation	Gaussian DFT B3LYP 6-311G(2d,p) 236 True	(2009+D.01)
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000056	0.000450
RMS Force value and threshold	0.000013	0.000300
Max Displacement value and threshold	0.000414	0.001800
RMS Displacement value and threshold	0.000108	0.001200
Job type: Frequency and thermochemical analysis		
Temperature	298.15 K	
Anharmonic effects	None	
Anharmonic effects	None	

Geometry optimization specific results Converged nuclear repulsion energy

Frequency and Thermochemistry specific results Enthalpy at 298.15 K Gibbs free energy at 298.15 K Entropy at 298.15 K -3277.02656 hartrees 47 -1.10 eV -2.82 eV -7.50 eV -8.53 eV

672.89356 Hartrees

-3276.95356 Hartrees -3276.99525 Hartrees 0.00014 Hartrees

Figure 2: Representation of the HOMO from two points of view.

Figure 3: Representation of the LUMO from two points of view.

		wavenumbers
Frequencies	Intensity	Symmetry
1324	174	А
1198	100	А
1142	88	А
1009	51	А
908	70	А
783	61	А

Table. Most intense (> 50 km/mol) molecular vibrations in wavenumbers

Table. Converged cartesian aton	nic coordinates	in Angstroms
---------------------------------	-----------------	--------------

Atom	Х	Y	\mathbf{Z}	
S	-2.0136	-0.1826	-0.0000	
С	-1.3614	1.4906	0.0004	
С	-0.0346	1.4589	0.0003	
С	0.5262	0.0877	-0.0002	
С	-0.3630	-0.8955	-0.0004	
\mathbf{Br}	2.4056	-0.1495	-0.0000	
0	-2.6830	-0.4628	1.2524	
Н	0.6079	2.3281	0.0003	
Н	-0.2272	-1.9641	-0.0006	
Н	-2.0312	2.3362	0.0004	
0	-2.6835	-0.4617	-1.2524	

16- Cycloadduct 3-CySO

a- Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	3-CySO
Formula	C8H6Br2O2S2
Charge	0
Spin multiplicity	1

Software	Gaussian	(2009+D.01)
Computational method	DFT	· · · · · ·
Functional	B3LYP	
Basis set name	6-311G(2d,p)	
Number of basis set functions	426	
Closed shell calculation	True	
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000041	0.000450
RMS Force value and threshold	0.000007	0.000300
Max Displacement value and threshold	0.000582	0.001800
RMS Displacement value and threshold	0.000133	0.001200
Job type: Frequency and thermochemical analysis		
Temperature	298.15 K	
Anharmonic effects	None	
Anharmonic effects	None	

Geometry optimization specific results Converged nuclear repulsion energy Frequency and Thermochemistry specific results Enthalpy at 298.15 K Gibbs free energy at 298.15 K Entropy at 298.15 K -6403.61565 hartrees 86 -1.53 eV -1.92 eV -6.79 eV -7.04 eV

2005.28079 Hartrees

-6403.47612 Hartrees -6403.53225 Hartrees 0.00019 Hartrees

Figure 2: Representation of the HOMO from two points of view.

	wave	numbers
Frequencies	Intensity	Symmetry
1644	93	А
1152	142	А
1084	168	А

Table. Most intense (> 50 km/mol) molecular vibrations in wavenumbers

Table.	Converged	cartesian	atomic	coordinates	in	Angstroms
--------	-----------	-----------	--------	-------------	----	-----------

Atom	Х	Y	Z	
S	-1.1700	2.1776	-1.3175	
С	-0.1125	1.9987	0.2392	
С	-0.4752	0.6743	0.9710	
С	-1.6023	0.0502	0.2077	
С	-2.0283	0.6393	-0.8962	
С	1.3920	1.9289	-0.0737	
S	2.0040	1.2502	1.6067	
С	0.8542	-0.1440	0.9995	
С	1.3633	-0.3678	-0.3926	
С	1.6677	0.7751	-1.0023	
Н	2.0274	0.8885	-2.0138	
0	3.4237	0.8414	1.5277	
Br	1.4704	-2.1007	-1.1494	
Н	-0.7905	0.8516	2.0024	
\mathbf{Br}	-2.3581	-1.5664	0.8924	
0	-2.0927	3.3289	-1.0955	
Н	0.8505	-1.0006	1.6653	
Н	-2.8272	0.3106	-1.5437	
Н	-0.3946	2.8845	0.8073	
Н	1.8588	2.8772	-0.3241	

Figure 3: Representation of the LUMO from two points of view.

17- Cycloadduct 3-Cymix

a-Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	3-Cymix
Formula	C8H6Br2O3S2
Charge	0
Spin multiplicity	1

Software Computational method Functional Basis set name Number of basis set functions Closed shell calculation	Gaussian DFT B3LYP 6-311G(2d,p) 449 True	(2009+D.01)
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000129	0.000450
RMS Force value and threshold	0.000017	0.000300
Max Displacement value and threshold	0.000755	0.001800
RMS Displacement value and threshold	0.000161	0.001200
Job type: Frequency and thermochemical analysis		
Temperature	298.15 K	
Anharmonic effects	None	
Anharmonic effects	None	

Geometry optimization specific results Converged nuclear repulsion energy

Frequency and Thermochemistry specific results Enthalpy at 298.15 K Gibbs free energy at 298.15 K Entropy at 298.15 K -6478.86009 hartrees 90 -1.59 eV -1.95 eV -6.96 eV -7.69 eV

2222.36871 Hartrees

-6478.71438 Hartrees -6478.77161 Hartrees 0.00019 Hartrees

Figure 2: Representation of the HOMO from two points of view.

	way	renumbers
Frequencies	Intensity	Symmetry
1653	69	Α
1329	68	А
1322	99	А
1237	64	А
1155	152	А
1130	100	А
1125	90	А

Table. Most intense (> 50 km/mol) molecular vibrations in wavenumbers

Atom	X	Y	Z	
S	-2.1834	-1.3326	0.8232	
C	-0.9640	-1.6348	-0.5292	
C	-0.5952	-0.2376	-1.1211	
C	-1.3260	0.8146	-0.3291	
C	-2.1144	0.4385	0.6625	
C	0.3593	-2.2822	-0.0853	
S	1.3517	-1.9214	-1.6877	
C	0.9611	-0.1681	-1.0440	
C	1.4140	-0.2699	0.3820	
C	1.0758	-1.4326	0.9297	
Н	1.2317	-1.7358	1.9526	
0	2.7839	-2.2402	-1.5068	
Br	2.2869	1.1670	1.2551	
Н	-0.9031	-0.1661	-2.1664	
Br	-1.1006	2.6310	-0.8435	
0	-3.4832	-1.8022	0.3864	
0	-1.6631	-1.7566	2.1078	
Н	1.4149	0.6068	-1.6526	
Н	-2.7147	1.0506	1.3176	
Н	1.5073	-2.2516	-1.2425	
Н	0.2989	-3.3452	0.1267	

Table. Converged cartesian atomic coordinates in Angstroms

Figure 3: Representation of the LUMO from two points of view.

18- Cycloadduct 3-Cy

a- Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	3-Cy
Formula	C8H6Br2O4S2
Charge	0
Spin multiplicity	1

Software Computational method Functional Basis set name Number of basis set functions Closed shell calculation	Gaussian DFT B3LYP 6-311G(2d,p) 472 True	(2009+D.01)
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization Max Force value and threshold RMS Force value and threshold Max Displacement value and threshold RMS Displacement value and threshold	0.000108 0.000020 0.001683 0.000355	0.000450 0.000300 0.001800 0.001200
Job type: Frequency and thermochemical analysis Temperature Anharmonic effects Anharmonic effects	298.15 K None None	

Geometry optimization specific results Converged nuclear repulsion energy Frequency and Thermochemistry specific results Enthalpy at 298.15 K Gibbs free energy at 298.15 K Entropy at 298.15 K -6554.10540 hartrees 94 -1.54 eV -1.86 eV -7.64 eV -8.07 eV

2430.79511 Hartrees

-6553.95379 Hartrees -6554.01243 Hartrees 0.00020 Hartrees

Figure 2: Representation of the HOMO from two points of view.

wavenumbers			
Frequencies	Intensity	Symmetry	
1654	67	А	
1339	162	А	
1325	145	А	
1233	70	А	
1179	101	А	
1172	88	А	
1131	143	А	
1101	78	А	
550	51	А	

Table. Most intense (> 50 km/mol) molecular vibrations in wavenumbers

Atom	Х	Y	Z	
S	-1.7786	-1.7742	1.0410	
С	-0.4407	-1.8172	-0.2310	
\mathbf{C}	-0.5024	-0.4522	-0.9922	
С	-1.5836	0.3860	-0.3614	
С	-2.2777	-0.1130	0.6462	
С	0.9776	-1.9515	0.3467	
\mathbf{S}	1.9201	-1.4242	-1.2188	
\mathbf{C}	0.9280	0.1572	-0.8851	
\mathbf{C}	1.2973	0.3525	0.5437	
\mathbf{C}	1.3233	-0.7942	1.2288	
Н	1.5979	-0.9111	2.2649	
0	1.4246	-2.1087	-2.3974	
0	3.3400	-1.2649	-1.0163	
\mathbf{Br}	1.7521	2.0563	1.2293	
Н	-0.7339	-0.6155	-2.0453	
\mathbf{Br}	-1.9157	2.1063	-1.1000	
0	-2.8228	-2.6956	0.6425	
0	-1.2329	-1.8436	2.3822	
Н	1.1440	0.9635	-1.5770	
Н	-3.0936	0.3356	1.1915	
Н	-0.6948	-2.6519	-0.8792	
Н	1.2421	-2.9403	0.7072	
	Atom S C C C C C C C C C C C C C C C C C C	$\begin{array}{c cccc} Atom & X \\ \hline S & -1.7786 \\ C & -0.4407 \\ C & -0.5024 \\ C & -1.5836 \\ C & -2.2777 \\ C & 0.9776 \\ S & 1.9201 \\ C & 0.9280 \\ C & 1.2973 \\ C & 1.2973 \\ C & 1.3233 \\ H & 1.5979 \\ O & 1.4246 \\ O & 3.3400 \\ Br & 1.7521 \\ H & -0.7339 \\ Br & -1.9157 \\ O & -2.8228 \\ O & -1.2329 \\ H & -0.7339 \\ Br & -1.9157 \\ O & -2.8228 \\ O & -1.2329 \\ H & -0.6948 \\ H & -0.6948 \\ H & 1.2421 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table. Converged cartesian atomic coordinates in Angstroms

Figure 3: Representation of the LUMO from two points of view.

19-2,5-dibromothiophene 4

a- Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	4
Formula	C4H2Br2S
Charge	0
Spin multiplicity	1

Software Computational method Functional Basis set name Number of basis set functions Closed shell calculation	Gaussian DFT B3LYP 6-311G(2d,p) 233 True	(2009+D.01)
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000135	0.000450
RMS Force value and threshold	0.000031	0.000300
Max Displacement value and threshold	0.000581	0.001800
RMS Displacement value and threshold	0.000141	0.001200
Job type: Frequency and thermochemical analysis		
Temperature	298.15 K	
Anharmonic effects	None	
Anharmonic effects	None	

Total molecular energy HOMO number LUMO+1 energies LUMO energies HOMO energies HOMO-1 energies

Geometry optimization specific results Converged nuclear repulsion energy

Frequency and Thermochemistry specific results Enthalpy at 298.15 K Gibbs free energy at 298.15 K Entropy at 298.15 K -5700.14275 hartrees 56 -1.08 eV -1.19 eV -6.49 eV -7.58 eV

794.18300 Hartrees

-5700.08819 Hartrees -5700.13025 Hartrees 0.00014 Hartrees

Figure 2: Representation of the HOMO from two points of view.

Figure 3: Representation of the LUMO from two points of view.

Table. Most inte	ble. Most intense (> 50 km/mol) molecular vibrations in wavenumbers				
Frequencies	Intensity	Symmetry			
978	87	А			

Table. Converged cartesian atomic coordinates in Angstroms

Atom	Х	Y	\mathbf{Z}	
Н	-1.3179	-2.4553	0.0000	
\mathbf{C}	-0.7126	-1.5604	0.0000	
\mathbf{C}	-1.2303	-0.3038	0.0000	
\mathbf{S}	0.0000	0.9222	0.0000	
С	1.2303	-0.3038	0.0000	
С	0.7126	-1.5604	0.0000	
Н	1.3179	-2.4553	0.0000	
\mathbf{Br}	-3.0567	0.1790	-0.0000	
 \mathbf{Br}	3.0567	0.1790	-0.0000	

20-2,5-dibromothiophene sulfoxide 4-SO

a- Description

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	4-SO
Formula	C4H2Br2OS
Charge	0
Spin multiplicity	1

b- Computational details

Software Computational method Functional Basis set name Number of basis set functions Closed shell calculation	Gaussian DFT B3LYP 6-311G(2d,p) 256 True	(2009+D.01)
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000211	0.000450
RMS Force value and threshold	0.000063	0.000300
Max Displacement value and threshold	0.001361	0.001800
RMS Displacement value and threshold	0.000400	0.001200
Job type: Frequency and thermochemical analysis		
Temperature	298.15 K	
Anharmonic effects	None	
Anharmonic effects	None	

Total molecular energy HOMO number LUMO+1 energies LUMO energies HOMO energies HOMO-1 energies

Geometry optimization specific results Converged nuclear repulsion energy

Frequency and Thermochemistry specific results Enthalpy at 298.15 K Gibbs free energy at 298.15 K Entropy at 298.15 K -5775.31615 hartrees 60 -1.19 eV -2.60 eV -6.86 eV -7.04 eV

946.71174 Hartrees

-5775.25730 Hartrees -5775.30266 Hartrees 0.00015 Hartrees

Figure 2: Representation of the HOMO from two points of view.

Figure 3: Representation of the LUMO from two points of view.

		wavenumbers
Frequencies	Intensity	Symmetry
 1113	117	Α
961	63	А

Table. Most intense (> 50 km/mol) molecular vibrations in wavenumbers

Table.	Converged	cartesian	atomic	coordinates in	Angstroms

Atom	Х	Y	\mathbf{Z}	
S	0.0001	-0.8066	-0.3589	
\mathbf{C}	-1.2643	0.4540	0.0286	
С	-0.7306	1.6743	0.1448	
С	0.7307	1.6743	0.1449	
\mathbf{C}	1.2645	0.4541	0.0285	
Н	1.3076	2.5862	0.2281	
0	0.0003	-1.9636	0.5676	
Н	-1.3075	2.5861	0.2279	
\mathbf{Br}	3.0772	-0.0300	-0.0191	
Br	-3.0773	-0.0300	-0.0191	