Synthesis, Structural and Spectroscopic Properties of Cyanido-bridged Mixed-valence Compound [Fe-NC-Ru-CN-Fe]

Ming Liu^a, Yan Xiong^a, Weixiu Xu^a, Yong Wang^{a*}

^a Hubei Key Laboratory of Drug Synthesis and Optimization, College of Chemical Engineering

and Pharmacy, Jingchu University of Technology, Jinmen, 444800, Hubei, P. R. China

Email: wangyong1987@jcut.edu.cn

Compound	1 .7H ₂ O	$2(2 \cdot CH_3 CN \cdot 0.5 NH_4 PF_6)$	4	trans-Ru ^{II} (Meopy) ₄ (CN) ₂	[CpFe ^{III} (dppe)Br](PF ₆)
CCDC	2233237	2233238	2233234	2233235	2233236
Chemical formula	C ₈₄ H ₉₂ F ₁₂ Fe ₂ N ₆ O ₇ P ₆ Ru	$\frac{C_{172}H_{166}F_{42}Fe_4N_{15}P_{15}}{Ru_2}$	$C_{88}H_{86}F_{12}Fe_2N_6$ O_4P_6Ru	$\mathrm{C}_{26}\mathrm{H}_{28}\mathrm{N}_6\mathrm{O}_4~\mathrm{Ru}$	C ₃₁ H ₂₉ BrF ₆ FeP ₃
Formula weight	1924.22	4131.28	4131.28 1918.21 589.61		744.21
Colour and Habit	red prism	red prism red prisi		red prism	red prism
Crystal Size / mm	0.47×0.33×0.04	0.38×0.32×0.12	0.20×0.10×0.09	0.61×0.13×0.05	0.41×0.31×0.18
<i>T /</i> K	293	293	293	293	293
Crystal system	tetragonal	monoclinic	triclinic	triclinic	monoclinic
Space group	P4/n	C2/c	<i>P</i> -1	<i>P</i> -1	$P2_{1}/n$
<i>a /</i> Å	30.879(4)	34.313(9)	11.243(16)	10.373(3)	13.129(5)
b /Å	30.879(4)	14.540(4)	13.466(17)	15.745(4)	12.844(4)
c / Å	20.440(4)	38.850(11)	15.947(19)	17.176(5)	18.599(6)
α / \deg	90	90.00	90.274(9)	96.368(2)	90.00
β / deg	90	110.278(5)	107.892(14)	105.641(4	96.680(5)
γ/\deg	90	90.00	111.689(9)	100.922(2)	90.00
V / Å ³	19490(6)	18182(8)	2116(5)	2613.3(12)	3114.9(18)
Z	8	4	1	4	4
$ ho_{ m calcd}(m g/cm^3)$	1.312	1.509	1.505	1.499	1.587
λ (Mo K _a , Å)	0.71073	0.71073	0.71073	0.71073	0.71073
μ (Mo K _{α} , mm ⁻¹)	0.618	0.702	0.709	0.643	1.978
Completeness	99.8%	99.7%	98.8%	99.0%	99.4%
F(000)	7904	8392	982	1208	1500

Table S1. Crystallographic Data and Details of Structure Determination for Compounds **1**, **2 4**, *trans*-Ru^{II}(Meopy)₄(CN)₂ and [CpFe^{III}(dppe)Br](PF₆)

	-36≤h≤36,	-40≤ <i>h</i> ≤40,	-14≤ <i>h</i> ≤14,	-13≤ <i>h</i> ≤13,	16≤ <i>h</i> ≤16,
h, k, l, range	-36≤k≤30,	-17≤k≤12,	-17≤k≤17,	-20≤k≤20,	-15≤k≤16,
	-24≤ <i>l</i> ≤24	-46≤ <i>l</i> ≤46	-20≤ <i>l</i> ≤20	-22≤ <i>l</i> ≤22	-24≤ <i>l</i> ≤24
θ range / deg	2.20-25.00	2.11-25.00	2.71-27.29	2.09-27.50	2.56-27.44
R _{int}	0.0765	0.0579	0.0511	0.0355	0.0603
Params/restraints/D	1225/575/17127	1220/524/15066	528/0/5854	667/0/11002	379/0/7065
ata(obs.)	1223/3/3/1/13/	1230/334/13900	338/0/3834	007/0/11902	
GOF	1.035	1.088	1.049	1.073	1.046
$R_{1, \omega}R_{2} (I > 2 \sigma(I))$	0.0758, 0.1921	0.0998, 0.2731	0.0742, 0.1921	0.0381, 0.0789	0.0481, 0.1209
$R_1, {}_{\omega}R_2$ (all data)	0.1365, 0.2522	0.1181 0.2945	0.1019, 0.2199	0.0517, 0.0915	0.0616, 0.1299

 $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|. \ _{\omega}R_2 = [\Sigma [\omega (F_o^2 - F_c^2)^2] / \Sigma [\omega (F_o^2)^2]]^{1/2}.$

Table S2. Selected Bond Lengths (Å) and Bond Angles (deg) for Compounds 1, 2 4, trans-
 $Ru^{II}(meopy)_4(CN)_2$ and $[CpFe^{III}(dppe)Br](PF_6)$

	1 .7H ₂ O	2(2 ·CH ₃ CN·0. 5NH ₄ PF ₆)	4	trans- Ru ^{II} (Meopy) ₄ (CN) ₂		[CpFe ^{III} (dppe) Br](PF ₆)
Ru1-C1	1.997(7)	2.048(7)	2.069(5)	2.055(3)	Fe1- C27	2.084(3)
Ru1-C2	2.036(7)	2.004(7)	2.069(5)	2.058(3)	Fe1 -C28	2.127(3)
Ru1-N3	2.098(6)	2.097(6)	2.146(4)	2.097(2)	Fe1-C29	2.152(3)
Ru1-N4	2.092(6)	2.105(6)	2.143(5)	2.105(2)	Fe1 -C30	2.155(3)
Ru1-N5	2.091(6)	2.095(6)	2.146(4)	2.101(2)	Fe1-C31	2.131(3)
Ru1-N6	2.102(6)	2.105(6)	2.143(5)	2.105(2)	Fe1-P1	2.2727(12)
C1≡N1	1.185(8)	1.174(9)	1.168(7)	1.160(4)	Fe1-P2	2.2823(10)
C2≡N2	1.173(8)	1.171(9)	1.168(7)	1.149(4)	Fe1-Br1	2.3649(9)
Fe1-N1	1.896(6)	1.914(6)	1.958(5)		P1-Fe1-Br1	90.90(3)
Fe2-N2	1.911(5)	1.889(5)	1.958(5)		P2-Fe1-Br1	95.99(3)
Fe1-P1	2.239(2)	2.204(2)	2.212(3)		P1-Fe1-P2	82.91(3)
Fe1-P2	2.251(2)	2.217(2)	2.212(3)			
Fe2-P3	2.218(2)	2.254(2)	2.212(3)			
Fe2-P4	2.224(2)	2.265(2)	2.212(3)			
Fe1-C23	2.101(10)	2.101(8)	2.111(5)			
Fe1-C24	2.114(10)	2.097(8)	2.090(6)			
Fe1-C25	2.145(10)	2.061(7)	2.105(6)			
Fe1-C26	2.096(9)	2.080(7)	2.122(6)			
Fe1-C27	2.044(8)	2.099(8)	2.122(6)			
Fe2-C54	2.101(8)	2.118(7)	2.111(5)			
Fe2-C55	2.081(7)	2.075(7)	2.090(6)			
Fe2-C56	2.053(8)	2.088(7)	2.105(6)			
Fe2-C57	2.100(8)	2.153(8)	2.122(6)			
Fe2-C58	2.102(8)	2.161(7)	2.122(6)			
C1-Ru1-C2	177.7(3)	178.2(3)	180.0	178.79(11)		
N1≡C1-Ru1	174.1(6)	173.9(6)	175.0(4)	177.8(3)		
N2≡C2-Ru1	179.3(6)	174.8(6)	175.0(4)	178.4(3)		

C1≡N1-Fe1	172.5(6)	172.3(6)	168.7(4)
C2≡N2-Fe2	173.8(5)	174.8(6)	168.7(4)
N1-Fe1-P1	89.68(18)	90.93(18)	93.03(14)
N1-Fe1-P2	93.49(19)	88.41(18)	87.87(13)
P1-Fe1-P2	84.83(8)	84.49(8)	84.89(8)
N2-Fe2-P3	93.36(18)	93.50(18)	93.03(14)
N2-Fe2-P4	93.6(2)	89.50(18)	87.87(13)
P3-Fe2-P4	84.34(8)	83.64(8)	84.89(8)
Fe1…Ru1	5.052	5.110	5.155
Fe2…Ru1	5.112	5.047	5.155
Fe1…Fe2	10.142	10.153	10.311

Table S3 Cyanide Stretching Frequencies, Electronic Absorption Spectra and Cyclic-Voltammetry Data for Compound 1-5 and Related Precursors.

Compound	$v_{\rm CN}$ (cm ⁻¹)		$P(V)/CH_3$	$P(V)/CH_2$
Compound		$V_{\rm max}$, cm ⁻ (ε , dm ⁻ mol ⁻ cm ⁻)	CN	Cl ₂
trans-Ru ^{II} (py) ₄ (CN) ₂	2058	40000 (20938), 27027 (28914)	0.92	
trans-Ru ^{II} (MeOpy) ₄ (CN) ₂	2056	27933 (17192)	0.54	
[CpFe ^{III} (dppe)(CH ₃ CN)]Br		360(852), 458(634)		
1	2068	18657 (604)		
2	2089, 2020	21505 (1297), 11641 (2357).	0.33, 0.45	0.34, 0.47
3	2023	465 (21505), 760 (13158)		
4	2061	21367 (876), 18939 (745)		
5	2084, 2010	21505 (1211), 19084 (983),9268	0.17, 0.33	0.30, 0.46
5		(2265)		

Figure S1. Molecular structure of compound *trans*- $Ru^{II}(MeOpy)_4(CN)_2$ (hydrogen atoms have been removed for clarity).

Figure S2 Molecular structure of $[CpFe^{III}(dppe)Br](PF_6)$. (hydrogen atoms have been removed for clarity).

Figure S3 Cyclic voltammogram of compound *trans*- $Ru(py)_4(CN)_2$ in a 0.10 M acetonitrile solution of $[Bu_4N][PF_6]$ at a scan rate of 100 mV s⁻¹.

Figure S4 Cyclic voltammogram of compound *trans*-Ru(meopy)₄(CN)₂ in a 0.10 M acetonitrile solution of $[Bu_4N][PF_6]$ at a scan rate of 100 mV s⁻¹.

Figure S5 Cyclic voltammogram of compound 1 in a 0.10 M dichloromethane solution of $[Bu_4N][PF_6]$ at a scan rate of 100 mV s⁻¹.

Figure S6 Cyclic voltammogram of compound 4 in a 0.10 M dichloromethane solution of $[Bu_4N][PF_6]$ at a scan rate of 100 mV s⁻¹.

Figure S7. IR spectra of compound trans-Ru(py)₄(CN)₂ in solid-state samples at room temperature. (KBr pellet)

Figure S8. IR spectra of compound trans-Ru(meopy)₄(CN)₂ in solid-state samples at room

temperature. (KBr pellet)

Figure S9. Electronic absorption spectra of compounds trans-Ru(py)₄(CN)₂ and trans-Ru(Meopy)₄(CN)₂ in CH₃CN solution at room temperature.