Supporting Information

Cu(I)-containing MOF as efficient catalyst for the reactions of carbon dioxide and propargylic alcohols to carbonates at room temperature

Yifan Li, Zhenwei Wei, Jiayin Hu,* Tianlong Deng*

Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China

E-mail: hujiayin@tust.edu.cn; tldeng@tust.edu.cn.

Content

1. NMR data of products	2
2. Figure S1	.3
3. Table S1	3

1. NMR data of products

4,4-Dimethyl-5-methylene-[1,3]dioxolan-2-one.

¹H NMR (400 MHz, Chloroform-*d*) δ 4.76 (s, 1H), 4.30 (s, 1H), 1.61 (s, 6H).¹³C NMR (101 MHz, Chloroform-*d*) δ 158.75, 151.29, 85.31, 84.64, 27.59.

4-Ethyl-4-methyl-5-methylene-[1,3]dioxolan-2-one.

¹H NMR (400 MHz, Chloroform-*d*) δ 4.78 (d, *J* = 3.9 Hz, 1H), 4.25 (d, *J* = 3.9 Hz, 1H), 1.88 (dq, *J* = 14.7, 7.4 Hz, 1H), 1.73 (dq, *J* = 14.7, 7.4 Hz, 1H), 1.55 (s, 3H), 0.95 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.38, 151.56, 87.63, 85.61, 33.36, 25.94, 7.31.

4-Isobutyl-4-methyl-5-methylene-[1,3]dioxolan-2-one.

¹H NMR (400 MHz, Chloroform-*d*) δ 4.75 (d, *J* = 4.0 Hz, 1H), 4.25 (d, *J* = 3.9 Hz, 1H), 1.87–1.73 (m, 2H), 1.68–1.57 (m, 1H), 1.54 (s, 3H), 0.93 (dd, *J* = 6.5, 2.6 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.26, 151.46, 87.36, 85.60, 48.46, 26.96, 24.27, 23.94, 23.64.

4-Methylene-1,3-dioxa-spiro[4.5]decan-2-one.

¹H NMR (400 MHz, Chloroform-*d*) δ 4.76 (d, *J* = 3.9 Hz, 1H), 4.33 (d, *J* = 3.9 Hz, 1H), 2.07–1.95 (m, 2H), 1.75–1.61 (m, 7H), 1.42–1.18 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.63, 151.45, 86.42, 85.51, 36.40, 24.25, 21.57.

4-Methyl-5-methylidene-4-phenyl-[1,3]dioxolan-2-one.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.10–6.94 (m, 5H), 4.50 (d, *J* = 4.1 Hz, 1H), 4.06 (d, *J* = 4.1 Hz, 1H), 1.52 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.41, 151.25, 139.34, 129.23, 128.98, 124.73, 88.29, 87.25, 27.38.

Figure S1 The XRD spectrum of [Cu^I]-Cu-BTC before and after the catalytic reaction.

3. Table S1

Table S1 A compa	rison of the cataly	tic activity [C	Cu ¹]-Cu-BTC in this v	vork and reported Cu(I)-MOFs.
1			-	I (7)

Entry	Cu(I)-MOFs/co-catalyst	P (MPa)	T (°C)	<i>t</i> (h)	Solvent	Yield (%)	Ref.
1	BPDPrCuCl/CsF	2.0	r.t.	24	CH ₃ CN	92	1
2	Cu(I)-CN-BPY/TEA	0.5	50	24	CH ₃ CN	96	2
3	$[Cu^I(bib)]_4\{V^V{}_4O_{12}\}/DBU$	0.4	r.t.	12	CH ₃ CN	99	3
4	{(NH ₂ C ₂ H ₆) _{0.75} [Cu ₄ I ₄ ·(L) ₃ · (In) _{0.75}]·DMF·H ₂ O}/TEA	0.5	50	10		99	4
5	[Cu ^I]-Cu-BTC/[Emim][OAc]	1.0	r.t.	12		91	This work

References

[1] A. C. Reyes, K. Farshadfar, M. Rudolph, F. Rominger, T. Schaub, A. Ariafard, A. Stephen, K. Hashmi, *Green Chem.*, 2021, **23**, 889.

[2] Z. L. Shi, J. C. Jiao, Q. X Han, Y. Xiao, L. K. Huang, M. X. Li, *Molecular Catalysis*, 2020, **496**, 111190.

[3] H. -R. Tian, Z. Zhang, S. -M. Liu, T. -Y. Dang, Z. Li, Y. Lu, S. -X. Liu, *Green Chem.*, 2020, 22, 7513.

[4] S. -L. Hou, J. Dong, X. -L. Jiang, Z. -H. Jiao, B. Zhao, Angewandte Chemie., 2018, 58, 577.