Supporting Information (SI)

Development and study of a bifunctional photocatalyst based on SAPO-34 molecular sieve

Run-quan Wang ${ }^{\text {a,b }, ~ W a n-p i n g ~ C h e n ~}{ }^{\text {a,b }}$, Yue-rongZhang ${ }^{\text {a,b }}$, Kai Song ${ }^{\text {a,b }}$,
Jia-xian Lia ${ }^{\text {a,b }}$, Yuan Tian ${ }^{\text {a,b }}$, Gao-feng Shia, ${ }^{\text {a,b }}$, Guo-ying Wang ${ }^{\text {ab, }{ }^{*}}$
${ }^{\text {a }}$ School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 7300050, China;
${ }^{\mathrm{b}}$ Key Laboratory of Low Carbon Energyand Chemical Engineering of Gansu Province, Lanzhou, 7300050, China

E-mail: 2363849965@qq.com;
gaofengshi_lzh@163.com

Complementary methods.

Preparation of catalysts

Preparation of $\mathrm{Bi}_{2} \mathrm{WO}_{6}$

Put $5 \mathrm{mmol} \mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ crystals with 2.00 g citric acid in 30.00 mL deionised water, stir for a certain time, add $2.5 \mathrm{mmol} \mathrm{Na} 2 \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ crystals, stir for a certain time, put in a hydrothermal synthesis kettle and react at $180^{\circ} \mathrm{C}$ for 20 h , wash the resulting solid with deionised water and anhydrous ethanol respectively for 3 times, and at $80^{\circ} \mathrm{C}$ Dried at $80^{\circ} \mathrm{C}$ for 12 h to obtain $\mathrm{Bi}_{2} \mathrm{WO}_{6}$ crystals.

Preparation of BiOI

Mix ethylene glycol monomethyl ether with water according to $1: 1$ (volume ratio); Liquid A: add $2.5 \mathrm{mmol} \mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ crystals to 25.00 ml of the mixture and stir; Liquid B : dissolve 2.5 mmol KI in 25.00 ml of the mixture and stir; add Liquid B to Liquid A drop by drop and stir for a certain time, then place it in a hydrothermal synthesis kettle. The synthesis was carried out at 160 ${ }^{\circ} \mathrm{C}$ for 6 h . The synthesized solid was washed with deionized water by centrifugation for 3 times, placed in an oven and dried at $80^{\circ} \mathrm{C}$ for 12 h to obtain BiOI crystals.

Preparation of $\mathrm{Bi}_{2} \mathrm{WO}_{6} @$ SAPO-34

After placing $5 \mathrm{mmol} \mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ crystals with 2.00 g citric acid in 30 mL deionised water and stirring for a certain time, $2.5 \mathrm{mmol} \mathrm{Na} 2 \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ crystals were added, and after stirring to form a crystalline solution, a certain amount of SAPO-34 molecular sieve sample was added and stirring was continued for 6 h . The synthetically modified SAPO-34 molecular sieves, respectively, were prepared by hydrothermal synthesis, noted as $\mathrm{Bi}_{2} \mathrm{WO}_{6} @$ SAPO- 34 .

Ethylene glycol monomethyl ether and water were mixed according to $1: 1(\mathrm{v} / \mathrm{v})$; Liquid A: 2.5 mmol $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ crystals were added to 25.00 ml of the mixture and stirred; Liquid $\mathrm{B}: 2.5$ mmol KI was dissolved in 25.00 ml of the mixture and stirred; Liquid B was added to Liquid A drop by drop, and after stirring to form the crystallized liquid, a certain amount of SAPO -34 molecular sieve sample, continue to stir for 6 h , and then prepare synthetically modified SAPO-34 molecular sieve by hydrothermal synthesis, respectively, noted as BiOI @ SAPO-34.

Theoretical calculations

Optimisation of the structure of the SAPO-34 molecular sieve

All quantum chemistry calculations were performed in Gaussian 09. The structure of the molecular sieve was initially optimised in ChemDraw using MM2/Minimize Energy, followed by geometry optimisation and frequency calculations using b3lyp/6-311+G(d,p), taking into account the effect of hydrogen bonding on the dispersion correction of the basis set. The HOMO and LUMO energy levels of the molecular sieve were analysed to indirectly infer the redox ability and determine whether the reaction occurred according to frontier molecular orbital theory. The transition state of the formaldehyde reaction mechanism was searched for the reaction products and reactants according to the TS method, which was further calculated using the M062X/6-311+G(d,p) method to obtain a high level energy map.

Density Flood Theory calculations for Bi-based catalysts

Calculations based on density flooding theory (DFT) were carried out using MedeA software. A pseudopotential of conservative parametric number is chosen for structural optimisation and electronic calculations, taking into account spin polarisation effects. Taking BiVO4 as an example, during the energy band calculation, the optimisation K-point is set to $3 \times 3 \times 3$, the cut-off energy
is 571.40 eV , the electron energy is $1.0 \times 10-6 \mathrm{eV}$, the maximum displacement is 0.001 A , the interatomic interaction force accuracy is $0.03 \mathrm{eV} / \mathrm{nm}$ and the intracrystal stress accuracy is 0.05 GPa.

Determination of formaldehyde content

Configuration of acetylacetone solution

Weigh 12.50 g of ammonium acetate crystals, add the appropriate amount of water to dissolve, add 1.5 ml of glacial acetic acid, add to a 50 ml volumetric flask, shake well and add 0.125 ml of acetylacetone, adjust the pH of the solution $=6$, add deionised water to fix the volume. Store in a refrigerator at $2-5^{\circ} \mathrm{C}$.

Configuration of formaldehyde standard solution

Measure 2.6 ml of 38% formaldehyde solution accurately, add a small amount of water and shake well, then use a glass rod to drain into a 100 ml volumetric flask and add deionised water to fix the volume. A standard solution of $1 \mathrm{~g} / \mathrm{ml}$ of formaldehyde can be obtained.

Accurately measure 1 ml of the configured formaldehyde standard solution, add to a 100 ml volumetric flask and fix the volume to obtain $1 \mu \mathrm{~g} / \mathrm{ml}$ of formaldehyde solution.

Determination of formaldehyde content by UV spectrophotometer

Accurately measure 2.00 ml of formaldehyde solution $(0.1 \mathrm{mg} / \mathrm{ml})$, add into a 200 ml volumetric flask and fix the volume. A formaldehyde solution can be obtained.

Measure 50 ml of the formaldehyde solution, add it to a 100 ml conical flask, add 2.5 ml of the previously prepared acetylacetone solution, react in a water bath at $60^{\circ} \mathrm{C}$ for 30 min , a yellow complex appears in the reaction solution, remove $3-4 \mathrm{ml}$ of the reaction solution, measure the UV absorption wavelength and a UV absorption peak appears at 413nm.

Formaldehyde content standard curve plotting

Dilute the configured formaldehyde standard solution according to different ratios of gradient, add 2.5 ml of previously equipped acetylacetone solution, react in a water bath at $60^{\circ} \mathrm{C}$ for 30 min , yellow complexes appear in the reaction solution, take out $3-4 \mathrm{ml}$ of the reaction solution, measure the UV absorption wavelength, and the standard curve of formaldehyde content can be obtained, see Figure S1.

Figure S1. Standard curve of formaldehyde content
Determination of formaldehyde content in the reaction solution

Photocatalytic degradation experiments were carried out by preparing $0.5 \mathrm{mg} / \mathrm{mL}$ of aqueous formaldehyde solution as the reaction solution and $2.5 \mathrm{~g} / \mathrm{L}$ of catalyst, which was irradiated in a mercury lamp. During the degradation, a 0.50 mL sample of the reaction solution was removed
according to a predetermined time gradient. It was transferred over to a liquid sampling bottle and the formaldehyde in the reaction solution was quantified using the acetylacetone UV spectrophotometer method. The procedure was as follows: 0.24 ml of the filtered reaction solution was accurately pipetted, 1.00 ml of acetylacetone buffer $(0.25 \%$, wt $)$ was added to it , the volume was fixed to 10.00 ml with deionised water, heated at $91^{\circ} \mathrm{C}$ in a water bath for 6 min and then removed, and the UV absorbance of the reaction solution was measured after it had cooled to room temperature.

Table S1. Standard card information for Bi-based catalysts and SAPO-34 molecular sieves

	JCPDS	2-Theta (${ }^{\circ}$)
BiVO_{4}	83-1700	$\begin{gathered} 18.98 \cdot 18.67,28.81 \cdot 28.95 \cdot 30.53 \cdot 35.21 \cdot 46.72, \\ 53.28 \cdot 59.67 \end{gathered}$
$\mathrm{Bi}_{2} \mathrm{WO}_{6}$	73-112	28.31 , 32.80 , 32.93 , 46.98 , 47.16 , 55.68 , 56.00
BiOI	73-2062	9.68 , 29.74 , 31.74 , 45.49, 51.49 , 55.3
SAPO-34	47-0429	9.5, 13.0, 16.2, 20.7, 26.0, 31.0

Table S2. Pore size and specific surface area of composite molecular sieve catalysts

	Surface Area $\left(\mathbf{m}^{2} / \mathbf{g}\right)$	Pore Volum $\left(\mathbf{c m}^{\mathbf{3} / \mathbf{g})}\right.$	Pore Size $(\mathbf{n m})$
BiVO_{4}	5.4018	0.01576	24.4777
$\mathrm{Bi}_{2} \mathrm{WO}_{6}$	4.0925	0.01493	25.5395
BiOI	25.9333	0.12746	20.7095
$\mathrm{SAPO}^{2} 34$	946.4700	0.47058	1.98878
$\mathrm{BiVO}_{4} @$ SAPO-34	287.6750	0.15569	2.16485
$\mathrm{BiVO}_{4}-$ SAPO-34	462.1212	0.23708	2.05209
$\mathrm{BiVO}_{4} /$ SAPO-34	387.2077	0.19556	2.02023
$\mathrm{Bi}_{2} \mathrm{WO}_{6} @$ SAPO-34	326.8095	0.29904	3.6601
$\mathrm{BiOI} @$ SAPO-34	353.6933	0.16684	1.8869

Table S3. Band gap of composite molecular sieve catalysts

BiVO_{4}	$\mathbf{E g}(\mathbf{e V})$
$\mathrm{Bi}_{2} \mathrm{WO}_{6}$	2.06
BiOI	2.56
$\mathrm{SAPO}^{2} 34$	1.68
$\mathrm{BiVO}_{4} @$ SAPO-34	
$\mathrm{BiVO}_{4}-\mathrm{SAPO}-34$	----
$\mathrm{BiVO}_{4} /$ SAPO-34	2.21
$\mathrm{Bi}_{2} \mathrm{NO}_{6} @$ SAPO-34	
$\mathrm{BiOI} @$ SAPO-34	2.08

Table S4. ICP-AES of composite molecular sieve catalyst BiVO 4_{4} @SAPO-34

Sample	Constant					
quality						
$\mathbf{m}_{\mathbf{0}}(\mathbf{g})$	volume $\mathbf{V}_{\mathbf{0}}(\mathbf{m L})$	Test element	Test solution element concentration Co (mg/L)	Dilution ratio f	Sample element content $\mathbf{C x}(\mathbf{m g} / \mathbf{k g})$	Sample element content W (\%)
0.0540	25	Si	2.665	10	12336.9	1.23%
0.0540	25	Al	1.202	100	55651.0	5.57%
0.0540	25	Bi	3.845	100	177997.0	17.80%
0.0540	25	P	3.105	100	143753.3	14.38%
0.0540	25	V	2.153	100	99693.6	9.97%

Figure S2. XRD patterns of BiOI, BiOI@SAPO-34 catalysts (a); $\mathrm{Bi}_{2} \mathrm{WO}_{6}, \mathrm{Bi}_{2} \mathrm{WO}_{6} @$ SAPO-34 catalysts

Figure $\mathrm{S} 3 . \mathrm{Bi}_{2} \mathrm{WO}_{6}, \mathrm{Bi}_{2} \mathrm{WO}_{6} @$ SAPO- 34 catalysts and N_{2} adsorption and desorption profiles (a) pore size distribution (b)

Figure S 4 . Plots of $\mathrm{BiOI}, \mathrm{BiOI} @$ SAPO- 34 catalysts and N_{2} uptake and desorption curves (a) pore size distribution (b)

Figure S5. Scanning electron micrograph of $\mathrm{BiVO}_{4} / \mathrm{SAPO}-34$ composite molecular sieve catalyst

Figure S6. Scanning electron micrograph of $\mathrm{BiVO}_{4}-\mathrm{SAPO}-34$ composite molecular sieve catalyst

Figure $\mathrm{S} 7 . \mathrm{XPS}$ patterns of $\mathrm{Bi}_{2} \mathrm{WO}_{6}, \mathrm{Bi}_{2} \mathrm{WO}_{6} @$ SAPO- 34 catalysts (a); XPS patterns of BiOI, BiOI@SAPO-34 catalysts (b)

Figure S8. XPS fine spectra of $\mathrm{Bi}_{2} \mathrm{WO}_{6}, \mathrm{Bi}_{2} \mathrm{WO}_{6} @$ SAPO-34 catalysts C1s (a); O1s (b); Si3n (c)

Figure S9. XPS fine spectra of $\mathrm{Bi}_{2} \mathrm{WO}_{6}, \mathrm{Bi}_{2} \mathrm{WO}_{6} @$ SAPO-34 catalysts $\mathrm{Al} 2 \mathrm{p}(\mathrm{a}) ; \mathrm{Bi} 4 \mathrm{f}(\mathrm{b}) ; \mathrm{I} 3 \mathrm{~d}(\mathrm{c})$; P2p (d)

Figure S10. XPS fine spectra of BiOI, BiOI@SAPO-34 catalysts C1s (a); O1s (b); Si3n (c)

Figure S11. XPS fine spectra of BiOI, BiOI@SAPO-34 catalysts Al2p (a); Bi4f (b); I3d (c); P2p (d)

Figure S12. Degradation of aqueous formaldehyde solutions by $\mathrm{Bi}_{2} \mathrm{WO}_{6}, \mathrm{Bi}_{2} \mathrm{WO}_{6} @$ SAPO-34 catalysts under mercury lamp conditions

Figure S13. Degradation of aqueous formaldehyde solutions by BiOI, BiOI@SAPO-34 catalysts under mercury lamp conditions

Figure S14. PL profiles of $\mathrm{Bi}_{2} \mathrm{WO}_{6}, \mathrm{Bi}_{2} \mathrm{WO}_{6} @$ SAPO- 34 catalysts (a); PL profiles of BiOI, BiOI@SAPO-34 catalysts (b)

Figure S 15 . UV-Vis spectra of $\mathrm{Bi}_{2} \mathrm{WO}_{6}, \mathrm{Bi}_{2} \mathrm{WO}_{6} @$ SAPO- 34 catalysts

Figure S16. UV-Vis spectra of BiOI, BiOI@SAPO-34 catalysts

Figure S17. EIS profiles of $\mathrm{Bi}_{2} \mathrm{WO}_{6}, \mathrm{Bi}_{2} \mathrm{WO}_{6} @$ SAPO- 34 catalysts (a); EIS profiles of BiOI, BiOI@SAPO-34 catalysts (b)

Figure S18. Energy band structure diagram of the $\mathrm{Bi}_{2} \mathrm{WO}_{6}$ catalyst (a); PDOS (b)

Figure S19. Energy band structure diagram of the BiOI catalyst (a); PDOS (b)

Figure S20. Differential charge diagram for $\mathrm{Bi}_{2} \mathrm{WO}_{6}$ catalyst (a); differential charge diagram for BiOI catalyst (b)

Figure S21. Reaction history of formaldehyde molecules on the surface of BiVO_{4} catalyst (a) reaction history of formaldehyde molecules on the surface of SAPO-34 molecular sieve (b)

Figure S22. SEM after the reaction of composite molecular sieve catalyst BiVO4@SAPO-34

Figure $\mathrm{S} 22 . \mathrm{N}_{2}$ adsorption and desorption curves of the composite molecular sieve catalysts

