Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

## **Supporting Information**

## Syngas production from the CO<sub>2</sub> reforming of waste cooking oil over catalysts derived from La<sub>1-x</sub>Sr<sub>x</sub>NiO<sub>3</sub> perovskites

SongYuan Hao<sup>1</sup>, Wenbo Luo<sup>1</sup>, Yaming Kang<sup>1,2</sup>, Sen Fu<sup>1</sup>,

Hong Yuan<sup>1,2,3</sup>\*

<sup>1</sup> School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China

<sup>2</sup> State Key Laboratory of National Ethnic Affairs Commission Chemical Technology, North Minzu University, Yinchuan 750021, China

<sup>3</sup> Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, China

\* Corresponding author Hong Yuan, yuanhong@nun.edu.cn

Songyuan Hao, 813490032@qq.com

Yaming Kang, scu.kym@foxmail.com

Wenbo Luo, 444281833@gg.com

Sen Fu, 1450320782@qq.com

For the reduced samples, La 3d and Ni 2p XPS spectra are very complicated due to the overlapping and strong interferences of Ni 2p and La 3d spectra<sup>1</sup>. Hence, the interference-free Ni (3p) signal was used for the analysis of the surface Ni species (Figure S1). For the reduced catalyst, the high-resolution XPS spectrum of La 3d (Figure S1a) revealed two peaks, around 834.2 and 837.6 eV, consistent to the signals from La 3d, indicating that the valence state of La was +3. Figure S1b shows the high-resolution XPS spectrum of Ni 2p in LaNiO<sub>3</sub>. The peaks located at 67.1 eV could be indexed to Ni 2p<sub>1/2</sub>, respectively, which is characteristic of Ni<sup>0</sup> cation<sup>2</sup>.

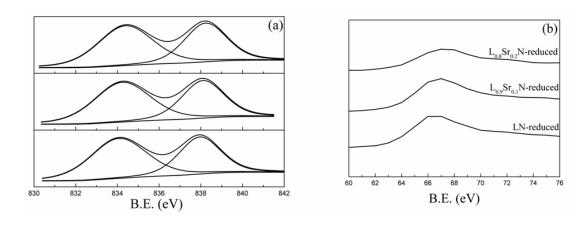



Figure S1 High-resolution XPS spectrum of La 3d (a) and Ni 2p (b) from the reduced catalyst.

- 1. Yang E, Moon D. Synthesis of LaNiO<sub>3</sub> perovskite by EDTA-cellulose method and comparison with conventional Pechini method: Application to steam CO<sub>2</sub> reforming of methane.
- 2. Liu K, Cheng Y, Shi Y, Zhang W, Wang Y, Lin X. Synergistic effect between La-Ni bimetallic oxides for the efficient decomposition of hydrogen peroxide[J]. New Journal of Chemistry, 2021, 45.