Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

## Density functional theory study of $Ni_x$ (x=4-16) cluster impregnation effects in multi-metal (Ce, Ti) UiO-66 metal organic frameworks

Phanikumar Pentyala, Prakash Biswas, Prateek K. Jha\*

Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee

247667, India

\*Corresponding author; Email: prateek.jha@ch.iitr.ac.in

\*Supporting Information\*

| Explanation                                                       | Name of configuration           |
|-------------------------------------------------------------------|---------------------------------|
| Ce/Zr-UiO-66 (16.6%)                                              | $L_{Ce}$                        |
| $Ni_4$ in Ce/Zr-UiO-66 (16.6%)                                    | $L_{Ce}$ -Ni <sub>4</sub>       |
| $Ni_8$ in Ce/Zr-UiO-66 (16.6%)                                    | $L_{Ce}$ -Ni <sub>8</sub>       |
| $Ni_{12}$ in Ce/Zr-UiO-66 (16.6%)                                 | $L_{Ce}$ -Ni <sub>12</sub>      |
| $Ni_{16}$ in Ce/Zr-UiO-66 (16.6%)                                 | $L_{Ce}$ -Ni <sub>16</sub>      |
| Ce/Zr-UiO-66 (33.3%)                                              | $\mathrm{H}_{Ce}$               |
| $Ni_4$ in Ce/Zr-UiO-66 (33.3%)                                    | $H_{Ce}$ -Ni <sub>4</sub>       |
| $Ni_8$ in Ce/Zr-UiO-66 (33.3%)                                    | $H_{Ce}$ -Ni $_8$               |
| $Ni_{12}$ in Ce/Zr-UiO-66 (33.3%)                                 | $H_{Ce}$ -Ni <sub>12</sub>      |
| $Ni_{16}$ in Ce/Zr-UiO-66 (33.3%)                                 | $H_{Ce}$ -Ni <sub>16</sub>      |
| Ti/Zr-UiO-66 (16.6%)                                              | $L_{Ti}$                        |
| $Ni_4$ in Ti/Zr-UiO-66 (16.6%)                                    | $L_{Ti}$ -Ni <sub>4</sub>       |
| Ni <sub>8</sub> in Ti/Zr-UiO-66 (16.6%)                           | $L_{Ti}$ -Ni <sub>8</sub>       |
| $Ni_{12}$ in Ti/Zr-UiO-66 (16.6%)                                 | $L_{Ti}$ -Ni <sub>12</sub>      |
| $Ni_{16}$ in Ti/Zr-UiO-66 (16.6%)                                 | $L_{Ti}$ -Ni <sub>16</sub>      |
| Ti/Zr-UiO-66 (33.3%)                                              | $\mathrm{H}_{Ti}$               |
| $Ni_4$ in Ti/Zr-UiO-66 (33.3%)                                    | $H_{Ti}$ -Ni <sub>4</sub>       |
| Ni <sub>8</sub> in Ti/Zr-UiO-66 (33.3%)                           | $H_{Ti}$ -Ni <sub>8</sub>       |
| $Ni_{12}$ in Ti/Zr-UiO-66 (33.3%)                                 | $H_{Ti}$ -Ni <sub>12</sub>      |
| $Ni_{16}$ in Ti/Zr-UiO-66 (33.3%)                                 | $H_{Ti}$ -Ni <sub>16</sub>      |
| Planar Ni <sub>4</sub> in octahedral void of UiO-66 (Zr)          | oct-UiO-66                      |
| Planar Ni <sub>4</sub> in octahedral void of Ce/Zr-UiO-66 (16.6%) | $oct-L_{Ce}-Ni_4$               |
| Another Ni <sub>4</sub> configuration in tetrahedral void         | tet- $L_{Ce}$ -Ni <sub>4</sub>  |
| Ni <sub>8</sub> in octahedral void                                | oct- $L_{Ce}$ - Ni <sub>8</sub> |
| $Ni_8$ in other tetrahedral void                                  | $tet-L_{Ce}-Ni_8$               |

Table S1: Nomenclature of the different  $Ni_x$  impregnated configurations



Figure S1: Stable configurations of Ni<sub>x</sub> (x=4-16) clusters in the pores of Ce/Zr-UiO-66 (16.6%), (a) L<sub>Ce</sub>-Ni<sub>4</sub>, (b) L<sub>Ce</sub>-Ni<sub>8</sub>, (c) L<sub>Ce</sub>-Ni<sub>12</sub> and (d) L<sub>Ce</sub>-Ni<sub>16</sub>. Color coding: Cream-Ce, Green-Zr, Grey-C, Red-O, White-H and Blue-Ni.



Figure S2: Stable configurations of Ni<sub>x</sub> (x=4-16) clusters in the pores of Ti/Zr-UiO-66 (16.6%), (a) L<sub>Ti</sub>-Ni<sub>4</sub>, (b) L<sub>Ti</sub>-Ni<sub>8</sub>, (c) L<sub>Ti</sub>-Ni<sub>12</sub> and (d) L<sub>Ti</sub>-Ni<sub>16</sub>. Color coding: Pink- Ti, Green- Zr, Grey- C, Red- O, White- H and Blue- Ni.



Figure S3: Stable configurations of Ni<sub>x</sub> (x=4-16) clusters in the pores of Ce/Zr-UiO-66 (33.3%). (a) H<sub>Ce</sub>-Ni<sub>4</sub>, (b) H<sub>Ce</sub>-Ni<sub>8</sub>, (c) H<sub>Ce</sub>-Ni<sub>12</sub> and (d) H<sub>Ce</sub>-Ni<sub>16</sub>. Color coding: Cream-Ce, Green-Zr, Grey-C, Red-O, White-H and Blue-Ni.



Figure S4: Stable configurations of Ni<sub>x</sub> (x=4-16) clusters in the pores of Ti/Zr-UiO-66 (33.3%). (a) H<sub>Ti</sub>-Ni<sub>4</sub>, (b) H<sub>Ti</sub>-Ni<sub>8</sub>, (c) H<sub>Ti</sub>-Ni<sub>12</sub> and (d) H<sub>Ti</sub>-Ni<sub>16</sub>. Color coding: Pink-Ti, Green-Zr, Grey-C, Red-O, White-H and Blue-Ni.



Figure S5: Ni<sub>4</sub> bending shapes in the different models, (a) UiO-66 (Zr) (114.1°), (b)  $L_{Ce}$ -Ni<sub>4</sub> (100.5°), (c)  $H_{Ce}$ -Ni<sub>4</sub> (86.9°), (d)  $L_{Ti}$ -Ni<sub>4</sub> (115.7°), and (e)  $H_{Ti}$ -Ni<sub>4</sub> (98.5°)



Figure S6: Additional configurations of Ni<sub>4</sub> clusters in octahedral and tetrahedral pores of UiO-66 (Zr) and Ce/Zr-UiO-66 (16.6%). (a) oct-UiO-66, (b) oct-L<sub>Ce</sub>-Ni<sub>4</sub>, and (c) tet-L<sub>Ce</sub>-Ni<sub>4</sub>. Octahedral void occupied planar Ni<sub>4</sub> is not interacted with carbons and has lower binding energies of 2.01 eV (a) and 2.12 eV (b) as compared to tetrahedral binding energy in (c) (-3.26 eV). Color coding: Cream- Ce, Green- Zr, Grey- C, Red- O, White-H and Blue- Ni



Figure S7: Additional configurations of Ni<sub>8</sub> clusters in octahedral and tetrahedral pores of Ce/Zr-UiO-66 (16.6%). (a) oct-L<sub>Ce</sub>- Ni<sub>8</sub>, and (b) tet-L<sub>Ce</sub>-Ni<sub>8</sub>. The shape of Ni<sub>8</sub> configuration in tetrahedral void changed as compared to octahedral void. Similar to Ni<sub>4</sub>, the binding energy of Ni<sub>8</sub> cluster in tetrahedral pore results into higher value of -3.53 eV (b) as compared to octahedral pore (-2.95 eV (a)). Color coding: Cream- Ce, Green- Zr, Grey- C, Red- O, White- H and Blue- Ni



Figure S8: Projected density of states (PDOS) of Ce (4f) before and after impregnation of Ni<sub>x</sub> (x=4-16) cluster in Ce/Zr-MOF (33.3%), (a) H<sub>Ce</sub>-Ni<sub>4</sub>, (b) H<sub>Ce</sub>-Ni<sub>8</sub>, (c) H<sub>Ce</sub>-Ni<sub>12</sub>, and (d) H<sub>Ce</sub>-Ni<sub>16</sub>. Orange circle represent new electronic state of Ce after impregnation of Ni<sub>x</sub> cluster



Figure S9: Projected density of states (PDOS) of Ti (3d) before and after impregnation of Ni<sub>x</sub> (x=4-16) cluster in Ti/Zr-MOF (33.3%), (a) H<sub>Ti</sub>-Ni<sub>4</sub>, (b) H<sub>Ti</sub>-Ni<sub>8</sub>, (c) H<sub>Ti</sub>-Ni<sub>12</sub>, and (d) H<sub>Ti</sub>-Ni<sub>16</sub>

| Configuration                    | Avg. charges on $Ce/Ti(e)$ |
|----------------------------------|----------------------------|
| Name                             |                            |
| $H_{Ce}$                         | 0.45                       |
| $H_{Ce}$ -Ni <sub>4</sub>        | 0.55                       |
| $H_{Ce}$ -Ni <sub>8</sub>        | 0.45                       |
| $H_{Ce}$ -Ni <sub>12</sub>       | 0.37                       |
| $H_{Ce}$ -Ni <sub>16</sub>       | 0.39                       |
| $H_{Ti}$                         | 1.576                      |
| H <sub>Ti</sub> -Ni <sub>4</sub> | 1.579                      |
| H <sub>Ti</sub> -Ni <sub>8</sub> | 1.578                      |
| $H_{Ti}$ -Ni <sub>12</sub>       | 1.585                      |
| $H_{Ti}$ -Ni <sub>16</sub>       | 1.588                      |

Table S2: Average Löwdin charges of doped metal node (Ce/Ti) in Ce/Zr-UiO-66 (33.3%), and Ti/Zr-UiO-66 (33.3%).