Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

for

Assessing the effect of substituents in ferrocene acylphosphines and their impact on gold-catalysed reactions

Petr Vosáhlo and Petr Štěpnička*

Contents

X-ray crystallography	S-2
Buried volume calculation	S-7
Copies of the NMR spectra	S-8
References	S-28

X-ray crystallography

Figure S1 PLATON plot of the molecular structure of 1c (30% probability ellipsoids)

Figure S2 PLATON plot of the molecular structure of 2b (30% probability ellipsoids)

Figure S3 PLATON plot of the molecular structure of **2c** (30% probability ellipsoids; both positions of the disordered P=Se moiety are shown)

Figure S4 PLATON plot of the molecular structure of 2d (30% probability ellipsoids)

Figure S5 PLATON plot of the molecular structure of **3c**·1.5C₆H₁₂ (30% probability ellipsoids)

Compound	1c	2b	2c
Formula	C ₃₁ H ₃₉ FeOP	C ₂₃ H ₃₁ FeOPSe	C ₃₁ H ₃₉ FeOPSe
Μ	514.44	489.26	593.40
Crystal system	monoclinic	monoclinic	monoclinic
Space group	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	$P 2_1/c$ (no. 14)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)
<i>T</i> [K]	120 (2)	120(2)	120(2)
a [Å]	10.8579(5)	14.2338(3)	13.6384(3)
<i>b</i> [Å]	6.7355(3)	10.1725(2)	11.0185(3)
<i>c</i> [Å]	34.096(2)	15.2719(3)	17.3274(4)
α [°]			
β [°]	98.833(3)	95.577(1)	98.677(1)
γ [°]			
<i>V</i> [Å] ³	2464.0(2)	2200.80(8)	2574.1(1)
Ζ	4	4	4
μ(Mo Kα) [mm ⁻¹]	5.681	2.422	2.086
Diffrns collected	30648	23550	38493
Independent diffrns	5067	5023	5888
Observed ^a diffrns	4821	4799	5643
R_{int^b} [%]	6.40	1.60	1.98
No. of parameters	308	244	335
<i>R^b</i> obsd diffrns [%]	6.74	1.69	2.62
<i>R, wR^b</i> all data [%]	7.19, 17.26	1.79, 4.39	2.74, 5.98
Δρ [e Å-3]	0.527, -1.254	0.339, -0.240	0.751, -0.398

Table S1. Selected crystallographic data and structure refinement parameters.^a

^{*a*} Diffractions with $I > 2\sigma(I)$. ^{*b*} Definitions: $R_{int} = \Sigma |F_0^2 - F_0^2(\text{mean})| / \Sigma F_0^2$, where $F_0^2(\text{mean})$ is the average intensity of symmetry-equivalent diffractions. $R = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$, $wR = [\Sigma \{w(F_0^2 - F_c^2)^2\} / \Sigma w(F_0^2)^2]^{1/2}$.

Table S1 continued

Compound	2d	$3c \cdot 1.5C_6H_{12}$
Formula	$C_{21}H_{25}FeO_4PSe$	$C_{31}H_{39}AuClFeOP{\boldsymbol{\cdot}}1.5C_6H_{12}$
Μ	507.19	873.09
Crystal system	triclinic	triclinic
Space group	<i>P</i> −1 (no. 2)	<i>P</i> –1 (no. 2)
<i>T</i> [K]	150(2)	120(2)
<i>a</i> [Å]	7.5245(4)	11.2049(9)
<i>b</i> [Å]	8.1925(4)	12.206(1)
<i>c</i> [Å]	18.405(1)	13.816(1)
α [°]	78.114(2)	82.383(2)
β [°]	82.669(2)	78.024(2)
γ [°]	63.498(2)	76.254(2)
<i>V</i> [Å] ³	992.76(9)	1788.5(2)
Ζ	2	2
μ(Mo Kα) [mm ⁻¹]	2.699	4.653
Diffrns collected	44878	131798
Independent diffrns	4565	8225
Observed ^a diffrns	4457	7975
R_{int}^{b} [%]	2.38	5.06
No. of parameters	257	407
<i>R^b</i> obsd diffrns [%]	1.75	2.96
<i>R, wR^b</i> all data [%]	1.80, 4.67	3.06, 9.37
Δρ [e Å-3]	0.383, -0.248	1.602, -1.423

Buried volume calculation

Buried volumes (V_{bur}) for individual ligands were calculated using the crystal structure coordinates of selenides **2a-d**, for which a complete series was available. To minimise the influence of ferrocenyl group orientation, which also affects the ligand sterics, the buried volume was determined by a unified approach as follows: the C(O)–P bond was oriented in East-West direction with the ferrocenyl group in the East part and the phosphine substituents in the West section as illustrated in Figure S6. The V_{bur} presented here is an average of V_{bur} estimated in the NW and SW quadrants by SambVca 2.1 web tool (Table S2).¹ The following parameters were used: P–Au distance 2.28 Å, sphere radius 3.50 Å, hydrogen atoms omitted, bond radii scaled by 1.17.

Figure S6 (left) Setting for V_{bur} estimation from the crystal structure data illustrated for compound **2c** and (right) the calculated steric map²

Parameter	2a	2b	2c	2d	-
<i>V</i> _{bur} (NW) [%]	31.6	28.5	40.1	30.2	-
<i>V</i> _{bur} (SW) [%]	36.0	33.7	35.9	30.6	
<i>V</i> _{bur} (av.) [%]	33.8	31.1	38.0	30.4	

Copies of the NMR spectra

Figure S7 ¹H NMR spectrum (400 MHz, CDCl₃) of 1b

Figure S8 ${}^{\rm 13}C\{{}^{\rm 1}H\}$ NMR spectrum (101 MHz, CDCl3) of 1b

17.75

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

Figure S9 ${}^{_{31}}P\{{}^{_{1}}H\}$ NMR spectrum (162 MHz, CDCl_3) of 1b

Figure S10 ¹H NMR spectrum (400 MHz, CDCl₃) of 1c

Figure S11 ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of 1c

Figure S12 $^{31}P\{^{1}H\}$ NMR spectrum (162 MHz, CDCl3) of 1c

45.28

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

Figure S13 ¹H NMR spectrum (400 MHz, CDCl₃) of 1d

Figure S14 ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of 1d

Figure S15 ${}^{31}P\{{}^{1}H\}$ NMR spectrum (162 MHz, CDCl3) of 1d

S-13

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

Figure S16 ¹H NMR spectrum (400 MHz, CDCl₃) of 2b

Figure S17 $^{\rm 13}C\{^{\rm 1}H\}$ NMR spectrum (101 MHz, CDCl_3) of 2b

I70 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

Figure S18 $^{31}P\{^{1}H\}$ NMR spectrum (162 MHz, CDCl₃) of 2b

Figure S19 ¹H NMR spectrum (400 MHz, CDCl₃) of 2c

²⁴⁰ ²³⁰ ²²⁰ ²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁶ ^{f1 (ppm)} **Figure S20** ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of **2c**

I70 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

Figure S21 $^{31}P\{^{1}H\}$ NMR spectrum (162 MHz, CDCl3) of 2c

Figure S22 ¹H NMR spectrum (400 MHz, CDCl₃) of 2d

Figure S23 ${}^{\rm 13}\rm C\{{}^{\rm 1}\rm H\}$ NMR spectrum (101 MHz, CDCl₃) of 2d

I70 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

Figure S24 ${}^{\rm 31}{\rm P}\{{}^{\rm 1}{\rm H}\}$ NMR spectrum (162 MHz, CDCl3) of 2d

Figure S25 ¹H NMR spectrum (400 MHz, CDCl₃) of 3a

Figure S26 $^{13}C\{^{1}H\}$ NMR spectrum (101 MHz, CDCl₃) of 3a

Figure S27 ${}^{31}P\{{}^{1}H\}$ NMR spectrum (162 MHz, CDCl3) of 3a

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

____29.26

Figure S28 ¹H NMR spectrum (400 MHz, CDCl₃) of 3b

Figure S29 ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of 3b

Figure S30 $^{31}P\{^{1}H\}$ NMR spectrum (162 MHz, CDCl₃) of 3b

Figure S31 ¹H NMR spectrum (400 MHz, CDCl₃) of 3c

Figure S32 ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of 3c

S-25

Figure S33 ${}^{31}P\{{}^{1}H\}$ NMR spectrum (162 MHz, CDCl3) of 3c

-64.05

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

Figure S34 ¹H NMR spectrum (400 MHz, CDCl₃) of 3d

Figure S35 $^{\rm 13}C\{^{\rm 1}H\}$ NMR spectrum (101 MHz, CDCl_3) of 3d

Figure S36 ${}^{31}\text{P}\{{}^{1}\text{H}\}$ NMR spectrum (162 MHz, CDCl_3) of 3d

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

____16.02

References

- 1 a) L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater, R. Oliva, V. Scarano and L. Cavallo, *Nat. Chem.*, 2019, **11**, 872; b) L. Falivene, R. Cudenchino, A. Poater, A. Petta, L. Serra, R. Oliva, V. Scarano and L. Cavallo, *Organometallics*, 2016, **35**, 2286.
- 2 A. Poater, F. Ragone, R. Mariz, R. Dorta and L. Cavallo, *Chem. Eur. J.*, 2010, **16**, 14348.