One pot synthesis and characterization of binary and ternary metal organic frameworks (MOFs) as tri-modal catalysts for thiophene electrooxidation, water splitting and 4-nitrophenol reduction

Mahendran Manivannan,^{a,b} Venkatachalam Rajagopal,^{a,b,d,} Lalithambigai Krishnamoorthy,^c Dhanasurya Selvam^e, Vembu Suryanarayanan,^{a,b*} Murugavel Kathiresan ^{a,b}, Thasan Raju,^{a,b} Lathe A. Jones,^d

^aElectro Organic & Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630003, Tamil Nadu, India E-mail: vidhyasur@yahoo.co.in

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.

^cDepartment of Electronics and Communication Engineering PSG College of Technology Coimbatore – 641 004, Tamil Nadu, India.

dCentre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science,

STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.

^eCentre for Education (CFE), CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India.

Corresponding author e-mail id : <u>vidhyasur@yahoo.co.in</u>, <u>surya@cecri.res.in</u>

Figure S1. EDAX images of a) Co-Ni-MOF, b) Co-Al-MOF c) Ni-Al-MOF, and d)Co-Al-Ni-MOF.

S.No.	Catalyst	Element weight (%)					
		Al	Со	Ni	С	Ν	0
1	Co-Ni-MOF	-	7.71	7.22	53.59	9.20	22.29
2	Co-Al-MOF	10.49	6.22	-	51.85	7.15	24.30
3	Ni-Al-MOF	8.70	-	49.57	25.92	3.72	12.09
4	Co-Al-Ni-	3.94	7.41	8.61	44.66	8.83	26.54
	MOF						

Table S1. EDAX analysis of the synthesized composite weight percentage

Figure S2. BET results of a) Ni-Al-MOF, b) Co-Al-MOF, c) Co-Ni-MOF and d) Co-Al-Ni-MOF.

Figure S3. BET pore size distribution plot of a) Ni-Al-MOF, b) Co-Al-MOF, c) Co-Ni-MOF and d) Co-Al-Ni-MOF.

Table S2. BET surface area (m² g⁻¹), pore volume (cm³ g⁻¹) and mean pore diameter (Å) of Ni-Al-MOF, Co-Al-MOF, Co-Ni-MOF and Co-Al-Ni-MOF obtained using the N₂ absorption- desorption isotherms.

S.No.	Catalyst	BET surface area (m ² g ⁻¹)	pore volume (cm ³ g ⁻¹)	mean pore diameter (Å)
1	Ni-Al-MOF	7.8144	0.1058	40
2	Co-Al-MOF	19.8026	0.2758	38.77
3	Co-Ni-MOF	6.0303	0.0720	39.26
4	Co-Al-Ni-MOF	38.777	0.4528	41.58

Figure S4. Impedance curves for synthesized MOFs for electrooxidation of thiophene

Na	Catalyst	Electrolyte	Overpotential	Tafel slope	fel slope References	
190.	Catalyst	Electrolyte	[mV]	[mV dec ⁻¹]	Kelerences	
1	Ni-MOF	0.1 M KOH	296	45	1	
2	Ni-BTC	0.1 M KOH	330	63	2	
3	Ni-MOF-74	1.0 M KOH	313	134.1	3	
4	Ni-MOF	1.0 M KOH	268	132.5	4	
5	3D NibpyfcdHp	$0.5 \mathrm{~M~H_2SO_4}$	350	60	5	
6	3D CobpyfedHp	$0.5 \mathrm{~M~H_2SO_4}$	400	65	5	
7	Co ₂ (Hpycz)4\$H2O	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	223	121	6	
8	THTA–Co H ₃ [Co ₃ (tht)(tha)]	0.5 M H ₂ SO ₄	283	71	7	
9	H ₃ [Ni ₃ (tht)(tha)]	$0.5 \mathrm{~M~H_2SO_4}$	315	76	7	
10	CoNi-MOF	1.0 M KOH	265	56	8	
11	Ni/Co(10:1)-MOFs	1.0 M KOH	248	40.92	9	
12	Co, 0.3Ni	1.0 M KOH	330	66	10	
13	CoNi-MOF/rGO	1.0 M KOH	318	48	11	
14	NiCo-UMOFNs	1.0 M KOH	250	42	12	
15	CoNi-MOF	1.0 M KOH	304	89.7	13	
16	3D Co/Ni-MOFs	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	357	107	14	
17	Ni/Co(II) MOFs/PPPT	0.5 M H ₂ SO ₄	369	127.1	15	
18		1.0 M KOH (OER)	220	97	This work	
	N1-C0-Al -MOF	1.0 M KOH (HER)	174	108	This work	

Table S3 Summary of comparative performance of Ni and Co based MOF catalysts recentlyreported for water splitting along with the present one.

References

- 1. J. Duan, S. Chen, C. Zhao, Nat. Commun. 2017, 8, 15341.
- L. Wang, Y. Wu, R. Cao, L. Ren, M. Chen, X. Feng, J. Zhou, B. Wang, ACS Appl. Mater. Interfaces 2016, 8, 16736.
- 3. J. Xing, K. Guo, Z. Zou, M. Cai, J. Du, C. Xu, Chem. Commun. 2018, 54, 7046.
- X. Ling, F. Du, Y. Zhang, Y. Shen, T. Li, A. Alsaedi, T. Hayat, Y. Zhou, Z. Zou, RSC Adv. 2019, 9, 3558.
- V. Khrizanforova, R. Shekurov, V. Miluykov, M. Khrizanforov, V. Bon, S. Kaskel, A. Gubaidullin, O. Sinyashin and Y. Budnikova, *Dalton Trans.*, 2020, 49, 2794–2802.
- R. Shekurov, V. Khrizanforova, L. Gilmanova, M. Khrizanforov, V. Miluykov,
 O. Kataeva, Z. Yamaleeva, T. Burganov, T. Gerasimova and A. Khamatgalimov,
 Dalton Trans., 2019, 48, 3601–3609.
- R. Dong, Z. Zheng, D. C. Tranca, J. Zhang, N. Chandrasekhar, S. Liu, X. Zhuang,
 G. Seifert and X. Feng, *Chem. Eur. J.*, 2017, 23, 2255–2260.
- M. Liu, W. Zheng, S. Ran, S. T. Boles, L. Y. S. Lee, *Adv. Mater. Interfaces* 2018, 5, 1800849.
- X. Wang, H. Xiao, A. Li, Z. Li, S. Liu, Q. Zhang, Y. Gong, L. Zheng,
 Y. Zhu, C. Chen, D. Wang, Q. Peng, L. Gu, X. Han, J. Li, Y. Li, *J. Am. Chem. Soc.* 2018, 140, 15336.
- 10. Y. Li, Z. Gao, H. Bao, B. Zhang, C. Wu, C. Huang, Z. Zhang, Y. Xie,
 H. Wang, *J. Energy Chem.* 2020, 53, 251.
- 11. X. R. Zheng, Y. H. Cao, D. Y. Liu, M. Cai, J. Ding, X. R. Liu, J. H. Wang,
 W. B. Hu, C. Zhong, ACS Appl. Mater. Interfaces 2019, 11, 15662.
- S. L. Zhao, Y. Wang, J. C. Dong, C. T. He, H. J. Yin, P. F. An, K. Zhao,
 X. F. Zhang, C. Gao, L. J. Zhang, J. W. Lv, J. X. Wang, J. Q. Zhang,

A. M. Khattak, N. A. Khan, Z. X. Wei, J. Zhang, S. Q. Liu, H. J. Zhao, Z. Y. Tang, *Nat. Energy* 2016, **1**, 16184.

- 13. J. Wu, Z. Yu, Y. Zhang, S. Niu, J. Zhao, S. Li, P. Xu, Small 2021, 17, 2105150.
- 14. X. Wang, J.-Y. Luo, J.-W. Tian, D.-D. Huang, Y.-P. Wu, S. Liand D.-S. Li, *Inorg. Chem. Commun.*, 2018, **98**, 141–144.
- 15. J.L. Liu, X.Y. Zhou, L. Qin, Y.Q. Wang, H.J. Zhu, G. Ni, M.L. Ma, Zhang, M.D. J. Mol.

Struct. 1252, 132184.