Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information for

Hierarchically porous Ce_xZr_{1-x}O₂ prepared by solvent volatilization for high-

efficient synthesis of DMC from CO₂ and methanol

Guanling Yang¹, Haobo Wang¹, Aizhong Jia^{1,2*}, Jingde Li^{1,2} and Yanji Wang^{1,2}

¹Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, Hebei University of Technology, Tianjin, P. R. China. ²Tianjin Key Laboratory of Chemical Process Safety, Tianjin, P. R. China. *Corresponding E-mail: arbija@habut adv an

*Corresponding E-mail: azhjia@hebut.edu.cn

Fig. S1 Catalytic performance of CeO₂ catalysts prepared from different metal salts. (CN: cerium nitrate, CAN: cerium ammonium nitrate, CA: cerium acetate)

Fig. S2 The SEM mapping of the precursor of sample $Ce_{0.9}Zr_{0.1}O_2$ prepared with cerium acetate as cerium source.

Fig. S3 Catalytic performance of $Ce_xZr_{1-x}O_2$ samples. Reaction conditions: catalyst 0.1 g, CH₃OH 15mL, 2-CP 3g, 5h.

Catalyst	Basicity ^a (µmol/g)				Acidity ^b (µmol/g)			
	B _W (<200°)	B _M (200~400)	B _s (>400)	B _T	A _W (<200)	A _M (200~400)	A _s (>400)	Total
CeO ₂	192.04	64.28	13.66	269.98	54.24	40.39	15.83	110.47
$Ce_{0.9}Zr_{0.1}O_2$	235.85	80.87	5.63	322.35	63.3	40.69	17.84	113.03
$Ce_{0.8}Zr_{0.2}O_2$	196.37	32.1	5.82	234.28	42.21	26.81	11.95	80.96
$Ce_{0.7}Zr_{0.3}O_2$	190.86	24.06	6.42	221.33	27.12	18.01	8.01	53.14

Tab. S1 The acid-basic properties of synthesized Ce_xZr_{1-x}O₂ catalysts.

^a Calculated by CO₂-TPD; ^b Calculated by NH₃-TPD; ^c The unit of temperature is ^oC.

Fig. S4 The digital photographs of samples: $(a_1-a_4) \operatorname{Ce}_x \operatorname{Zr}_{1-x} O_2$ precursors and $(b_1-b_4) \operatorname{Ce}_x \operatorname{Zr}_{1-x} O_2$ materials (x=1-0.7, for the sample number from 1 to 4).

Fig. S5 The relationship between catalytic performance and acid-base site content of Ce_xZr_{1-x}O₂.

Fig. S6 XPS spectras of (a) full spectra; (b) Ce3d; (c) O1s and (d) Zr3d of Ce_{0.9}Zr_{0.1}O₂.