Solar Light Motivated Photoelectrocatalytic and Photocatalytic Applications Based on Flower-like NV-g-C₃N₅@VS₂ Heterojunction

Bicheng Hu^a, Yuhui Zhang^a, Jincheng Zhang^a, Jiazan Liu^a, Meng Lei^a, Chenxi Zhao^a,

Qiujun Lu^a, Haiyan Wang^{a*}, Fuyou Du^{a*} and Shiying Zhang^{b*}

^a College of Biological and Chemical Engineering, Changsha University, Changsha,

410022, Hunan Province, China

^b Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha

University, Changsha, 410022, Hunan Province, China

^c Hunan Engineering Research Center of Degradable Materials and Molding

Technology, Changsha University, Changsha, 410022, Hunan Province, China

* Corresponding author; Tel: +86-84261506; Fax: +86-731-84261382;

E-mail address: wanghaiyan@ccsu.edu.cn (Haiyan Wang), dufu2005@126.com (Fuyou Du),

cdzhangshiying@163.com (Shiying Zhang)

Fig. S1 (A) EDX image of NV-g- $C_3N_5@VS_2$ heterojunction; (B) N_2 adsorption and desorption isotherm curves of NV-g- C_3N_5 and NV-g- $C_3N_5@VS_2$ heterojunction.

Fig. S2 (A) UV-vis DRS spectra of VS₂, NV-g-C₃N₅, g-C₃N₅ and NV-g-C₃N₅@VS₂

heterojunction. (B) Solid-state fluorescence spectra of VS₂, NV-g-C₃N₅, NV-g-C₃N₅@VS₂.

Fig. S3 (A) UV-Vis absorption spectra of NH_4^+ treated with indoxyl blue at room temperature for 2 h. (B) The linear relationship between the standard concentration of NH_4^+ and the absorbance at 650 nm.

Fig. S4 (A) Ammonia yields of NV-g-C₃N₅@VS₂ heterojunctions synthesized by different mass ratio of NV-g-C₃N₅, ammonium metavanadate and thioacetamide. a, b, c, d and e represent 0.4:0.2:0.8, 0.2:0.2:0.8, 0.1:0.2:0.8, 0.05:0.2:0.8 and 0.04:0.2:0.8, respectively. (B) Ammonia yields of NV-g-C₃N₅@VS₂ heterojunctions synthesized by different mass ratio of NV-g-C₃N₅, ammonium metavanadate and thioacetamide. a, b, c, d and e represent 0.1:0.2:0.2, 0.1:0.2:0.4, 0.1:0.2:0.6, 0.1:0.2:0.8 and 0.1:0.2:1.0, respectively. (C) Ammonia yields of NV-g-C₃N₅@VS₂ heterojunctions synthesized by different hydrothermal temperature. (D) Ammonia yields of NV-g-C₃N₅@VS₂ heterojunctions synthesized by different hydrothermal time. (E) Ammonia yields of NV-g-C₃N₅@VS₂ heterojunctions synthesized by NV-g-C₃N₅ treated with different NaOH (0, 0.005, 0.05, 0.1, 0.2, 0.3 g). (F) Ammonia production rates of NV-g-C₃N₅@VS₂ heterojunctions catalyzed at different applied voltages for 1 h.

Material	electrolyte solution	Ammonia production	References
Witteriur	chectiony te solution	rate $(\mu g h^{-1} m g^{-1})$	References
NV-g-C ₃ N ₅ /BiOBr	0.05 M HCl+0.05 M	29.4	1
	Na ₂ SO ₄		
N-NiO/CC	0.1 M LiClO ₄ at -0.5 V	22.7	2
Au NPs-PTFE	$0.05 \text{ M} \text{ H}_2 \text{SO}_4 \text{+} 0.05 \text{ M}$	18.9	3
	Na ₂ SO ₃		
g-C ₃ N ₄ /ZnMoCdS	0.1 M KCl	2.5	4
Au/TiO ₂	0.1 M HCl at -0.40 V	34.1	5
NV -g- C_3N_5/VS_2	0.1 M Na ₂ SO ₄	49.26	This work

Tab. S1 Comparison of photoelectric catalytic nitrogen reduction with different materials.

Fig. S5 (A) The electrochemical impedance spectroscopy (EIS) results and (B) photocurrent responses of NV- C_3N_5 , VS₂ and NV-g- C_3N_5 @VS₂ heterojunction under visible light irradiation, respectively.

Fig. S6 The productive rate of ammonia of the mechanically mixed NV- C_3N_5 and VS₂ (a), and NV-g- C_3N_5 @VS₂ heterojunction (b) in 0.1 M Na₂SO₄ solution filled N₂ with the bias voltage of - 0.4 V under visible light.

Fig. S7 Schematic illustration of the preparation of NV-g- C_3N_5 and the photoelectric catalytic nitrogen reduction reaction of NV-g- C_3N_5 @VS₂ heterojunction.

Fig. S8 Plots of transformed Kubelka–Munk function versus photon energy of (A) NV-g- C_3N_5 and (B) VS_2 .

Fig. S9 The linear relationships between the absorbance and the standard concentration of RhB

MB and MO, respectively.

Fig. S10 The maximum adsorption capacity of pristine $g-C_3N_5$, $NV-g-C_3N_5$, VS_2 and $NV-g-C_3N_5$ ($@VS_2$ heterojunction.

Fig. S11 The changes ratio Rhodamine concentration with irradiation time over the mechanically mixed NV-C₃N₅ and VS₂ (a), and NV-g-C₃N₅@VS₂ heterojunction under visible light irradiation. C_0 =40 mg L⁻¹.

Fig. S12 Recyclability of the visible photocatalytic decomposition of MB by NV-g-C₃N₅@VS₂ heterojunction. C_0 is the initial concentration of RB. C is the remaining concentration of RB. C_0 =40 mg L⁻¹.

Fig. S13 The change ratio (A) MO and (B) MB concentration with irradiation time over NV-g- $C_3N_5@VS_2$ heterojunction under visible light irradiation. $C_0=40 \text{ mg } \text{L}^{-1}$. C_0 and C are the original and the remaining concentration of pollution (MO and MB), respectively.

Fig. S14 The changes ratio RB concentration with (A) p-benzoquinone and (B) dimethyl sulfoxide over NV-g- C_3N_5 @VS₂ heterojunction under visible light irradiation.

Reference

1. Li, M.; Lu, Q.; Liu, M.; Yin, P.; Wu, C.; Li, H.; Zhang, Y.; Yao, S., Photoinduced charge separation via the double-electron transfer mechanism in nitrogen vacancies $g-C_3N_5/BiOBr$ for the photoelectrochemical nitrogen reduction. *ACS Appl. Mater. Inter.* **2020**, *12* (34), 38266-38274.

2. Wang, X.-h.; Wang, J.; Li, Y.-b.; Chu, K., Nitrogen-doped NiO nanosheet array for boosted electrocatalytic N₂ reduction. *ChemCatChem* **2019**, *11* (18), 4529-4536.

3. Zheng, J.; Lyu, Y.; Qiao, M.; Wang, R.; Zhou, Y.; Li, H.; Chen, C.; Li, Y.; Zhou, H.; Jiang, S. P.; Wang, S., Photoelectrochemical synthesis of ammonia on the aerophilic-hydrophilic heterostructure with 37.8% efficiency. *Chem.* **2019**, *5* (3), 617-633.

4. Zhang, Q.; Hu, S.; Fan, Z.; Liu, D.; Zhao, Y.; Ma, H.; Li, F., Preparation of $g-C_3N_4/ZnMoCdS$ hybrid heterojunction catalyst with outstanding nitrogen photofixation performance under visible light via hydrothermal post-treatment. *Dalton T.* **2016**, *45* (8), 3497-3505.

5. Zhao, S.; Liu, H.-X.; Qiu, Y.; Liu, S.-Q.; Diao, J.-X.; Chang, C.-R.; Si, R.; Guo, X.-H., An oxygen vacancy-rich two-dimensional Au/TiO₂ hybrid for synergistically enhanced electrochemical N2 activation and reduction. *J. Mater. Chem. A* **2020**, *8* (14), 6586-6596.