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Figure. S1 TEM image of Fe-ZIF-8@PVP



Table S1. Pore structure characteristics of Fe-N-C@NC and Fe-N-C

Sample
surface area

(m2 g-1)

pore volume

(cm3 g-1)

pore diameter

(nm)

Fe-N-C@NC 1163.9619 1.1459 3.9379

Fe-N-C 579.2399 0.9750 6.7330



Figure. S2 High-resolution XPS spectra of (a) survey, (b) C 1s and (c) O 1s for Fe-N-

C@NC and Fe-N-C.



Figure. S3 (a) LSV curves of Fe-N-C with different molar of metallic iron (0.3 mmol, 

0.5mmol and 0.7 mmol), (b) LSV curves of Fe-N-C@NC with different grams of 

polyvinylpyrrolidone (0.5g, 1g, 1.5g, 2g, with optimal metallic iron additions) and (c) 

LSV curves of Fe-N-C@NC with different pyrolysis temperatures (900 oC, 950 oC and 

1000 oC)



Figure. S4 LSV curves at various rotation rates for the ORR and the corresponding 

K-L plots for (a, b) Fe0.3-N-C, (c, d) Fe0.5-N-C, and (e, f) Fe0.7-N-C in the O2-saturated 

0.1 M KOH solution, respectively.



Figure. S5 LSV curves at various rotation rates for the ORR and the corresponding 

K-L plots for (a, b) Fe-N-C@NC0.5, (c, d) Fe-N-C@NC1, (e, f) Fe-N-C@NC1.5, and (g, 

h) Fe-N-C@NC2 in the O2-saturated 0.1 M KOH solution, respectively.



Figure. S6 LSV curves at various rotation rates for the ORR and the corresponding 

K-L plots for (a, b) Fe-N-C@NC-950 and (c, d) Fe-N-C@NC-1000 in the O2-saturated 

0.1 M KOH solution, respectively



Figure. S7 LSV curves at various rotation rates for the ORR and the corresponding 

K-L plots for 20% Pt/C in the O2-saturated 0.1 M KOH solution.



Figure. S8 LSV curves of Fe-N-C@NC before and after adding 5 mM NaSCN into 

0.05M H2SO4. Electrode rotation speed, 1600 rpm; scan rate, 10 mV/s.



Figure. S9 CV at scan rates of 10, 20, 30, 40 and 50 mV s-1 in 0.1 M KOH electrolyte 

for (a) Fe-N-C@NC, (b) Fe-N-C and (c) 20% Pt/C.



Figure. S10 LSV curves of Fe-N-C@NC and Fe-N-C after ADT.



Figure. S11 voltage-energy density curves for different current densities.



Figure. S12 TEM was used to test the Fe-N-C@NC material after cycling, and it was 

found that its morphology and structure were well preserved.



Table S2 Elemental analysis parameters of samples

Sample C (at%) N (at%) O (at%) Fe (at%)

initial 80.87 3.27 14.65 1.21
Fe-N-C@NC

after 150 h 79.97 0.65 18.35 1.03

initial 80.54 2.97 14.44 2.05
Fe-N-C

after 150 h 74.94 0.64 24.24 0.18



Table S3 Electrochemical performance of Zn-air batteries with our catalysts and other 

advanced catalysts reported recently.

Catalyst

Catalyst 

loading

(mg cm-2)

Peak power 

density

(mW cm-2)

Cycling 

time

(h)

Referenc

e

Fe-N-C@NC 1.0 170.8 150 This work

FeS/Fe3C@NS-C-

900
1.25 90.9 865 1

CeO2-FeNC-5 4.0 169 200 2

Fe-N-C/2rGO 1.0 164 30 3

FeNC-0.04 1.0 165 - 4

NiFe(1:2)P/Pi 2.0 395 100 5

Fe-KJB-3-60A 0.15 251 156 6

Co SAs@PNCN 1.0 220 89 7

Fe-N/S-HPC 1.0 188.4 240 8

Fe/Co/Zn-CNZIF - 156.7 137 9
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