Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

for

Synthesis and characterisation of Group 11 metal complexes with a guanidine-tagged triphenylphosphine and evaluation of the isolated Au(I) complexes in gold-mediated organic reactions

Zdeněk Leitner, Ivana Císařová and Petr Štěpnička*

Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague, Czech Republic

Contents

X-ray crystallography	S-2
Copies of the NMR spectra	S-13

X-ray crystallography

Figure S1 PLATON plot of the structure of $2a \cdot C_2H_4Cl_2$ with displacement ellipsoids at the 30% probability level (symmetry operations: a = 1-x, y, 1-z; b = 2-x, y, 2-z)

Figure S2 Simplified packing diagram for $2\mathbf{a} \cdot C_2 H_4 Cl_2$ showing the N–H…F hydrogen bonds (N2…F1 = 3.043(4) Å, N3…F2 = 3.024(5) Å; the chains propagate along the [1 0 1] direction)

Figure S3 PLATON plot of the structure of $2b \cdot CH_2Cl_2$ showing displacement ellipsoids at the 30% probability level

Figure S4 Simplified packing diagram for $2\mathbf{b} \cdot CH_2Cl_2$ illustrating the cooperative N-H···Br hydrogen bonds (N2···Br1 = 3.525(2) Å, N3···Br1 = 3.460(2) Å; N52···Br1 = 3.527(2) Å, and N53···Br1 = 3.420(2) Å)

Figure S5 PLATON plot of 3a with displacement ellipsoids at the 30% probability level

Figure S6 Simplified packing diagram for **3a** (N2…F3 = 3.089(3) Å, N52…F4 = 3.106(3) Å; the chains are oriented along the crystallographic *b* axis)

Figure S7 PLATON plot of 4 with displacement ellipsoids at 30% probability level

Figure S8 Section of the infinite hydrogen-bonded chains in the structure of **4** (N2…Cl = 3.487(1) Å; the chains are oriented parallel to the crystallographic *c* axis)

Figure S9 PLATON plot of the complex molecule in the structure $7a \cdot H_2O \cdot CH_2Cl_2$ showing displacement ellipsoids at the 30% probability level

Figure S10 Section of the hydrogen-bonded ribbon in the structure of $7a \cdot H_2O \cdot CH_2Cl_2$. Note that the water molecules and chloride anions, interconnected by HO–H···Cl⁻ hydrogen bonds into a chain in the centre, are alternating in their positions (50:50).

Figure S11 PLATON plot of the molecular structure of $7b \cdot \frac{1}{2}C_2H_4Cl_2$ with displacement ellipsoids at the 30% probability level

Figure S12 Simplified packing diagram for **7b**· $\frac{1}{2}C_2H_4Cl_2$ (N1…Cl1 = 3.221(3) Å; a = 2–x, 1–y, 2–z; additional contacts are seen between the guanidine NH and the [SbF₆]⁻ anion)

Figure S13 PLATON plot of the structure of compound **5** with displacement ellipsoids at the 30% probability level

Figure S14 Simplified diagram showing the N–H…F hydrogen bonds in the structure of **5** (N52…F6 = 3.253(2) Å, b = $\frac{1}{2}$ -x, $\frac{1}{2}$ +y, $\frac{1}{2}$ -z)

Figure S15 PLATON plot of the structure of $6 \cdot 2 \text{CH}_2 \text{Cl}_2$ with displacement ellipsoids at 30% probability level. The N-H…F hydrogen bond is indicated by red lines (N3…F2 = 3.143(3) Å).

Compound	$2a \cdot C_2H_4Cl_2$	$2b \cdot CH_2Cl_2$	3a
Formula	$C_{52}H_{64}BCl_2CuF_4N_6P2$	$C_{51}H_{62}BrCl_2CuN_6P_2$	$C_{50}H_{60}AgF_6N_6P_2Sb$
Μ	1056.28	1035.35	1150.60
Crystal system	monoclinic	monoclinic	monoclinic
Space group	<i>C</i> 2 (no. 5)	<i>Cc</i> (no. 9)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)
<i>T</i> [K]	120(2)	120(2)	120(2)
a [Å]	11.4909(6)	11.3528(5)	9.0246(3)
<i>b</i> [Å]	20.768(1)	22.421(1)	13.8102(4)
<i>c</i> [Å]	12.5771(7)	20.7154(8)	41.589(1)
α [°]	90	90	90
β [°]	115.248(2)	101.490(2)	94.617(1)
γ [°]	90	90	90
<i>V</i> [Å] ³	2714.7(3)	5167.3(4)	5166.4(3)
Ζ	2	4	4
μ(Mo Kα) [mm ⁻¹]	0.613	1.401	1.025
Diffrns collected	62555	92033	76434
Independent diffrns	6241	15051	11855
Observed ^a diffrns	6219	14486	11298
R_{int}^{b} [%]	2.40	3.40	2.28
No. of parameters	321	577	603
<i>R^b</i> obsd diffrns [%]	3.12	2.59	3.72
<i>R</i> , <i>wR^b</i> all data [%]	3.14, 7.95	2.82, 6.01	3.94, 7.35
Δρ [e Å-3]	0.51, -0.30	0.55, -0.54	1.69, -1.24

Table S1. Selected crystallographic data and structure refinement parameters.^a

^{*a*} Diffractions with $I > 2\sigma(I)$. ^{*b*} Definitions: $R_{int} = \Sigma |F_0^2 - F_0^2(\text{mean})| / \Sigma F_0^2$, where $F_0^2(\text{mean})$ is the average intensity of symmetry-equivalent diffractions. $R = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$, and $wR = [\Sigma \{w(F_0^2 - F_c^2)^2\} / \Sigma w(F_0^2)^2]^{1/2}$.

Table S1 continued

Compound	4	$7a \cdot H_2O \cdot CH_2Cl_2$	$7b \cdot \frac{1}{2}C_2H_4Cl_2$
Formula	$C_{25}H_{30}AuClN_3P$	C ₂₆ H ₃₅ AuCl ₄ N ₃ OP	$C_{26}H_{32}AuCl_2F_6N_3PSb$
Μ	635.90	775.30	921.13
Crystal system	monoclinic	triclinic	triclinic
Space group	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	<i>P</i> –1 (no. 2)	<i>P</i> -1 (no. 2)
<i>T</i> [K]	150(2)	150(2)	120(2)
<i>a</i> [Å]	8.9997(3)	8.5896(3)	9.8737(3)
<i>b</i> [Å]	20.4818(7)	9.5972(3)	11.1820(3)
<i>c</i> [Å]	14.2314(4)	19.1254(5)	15.0194(5)
α [°]	90	85.717(1)	75.100(1)
β [°]	107.334(1)	81.756(1)	86.198(1)
γ [°]	90	84.901(1)	85.197(1)
<i>V</i> [Å] ³	2504.1(1)	1551.09(8)	1595.15(8)
Ζ	4	2	2
μ(Mo Kα) [mm ⁻¹]	6.062	5.162	5.714
Diffrns collected	72057	29187	32034
Independent diffrns	5764	7106	7286
Observed ^a diffrns	5601	6974	6966
R_{int}^{b} [%]	2.37	2.27	1.90
No. of parameters	284	309	410
<i>R^b</i> obsd diffrns [%]	1.11	1.93	2.27
<i>R, wR^b</i> all data [%]	1.17, 2.71	1.98, 4.72	2.42, 5.19
Δρ [e Å-3]	0.42, -0.42	1.06, –1.22	1.66, –1.77

Table S1 continued

Compound	5	6·2CH ₂ Cl ₂
Formula	$C_{50}H_{60}AuF_6N_6P_2Sb$	$C_{52}H_{64}Au_2Cl_4F_{12}N_6P_2Sb_2\\$
Μ	1239.69	1842.26
Crystal system	monoclinic	monoclinic
Space group	<i>P</i> 2 ₁ / <i>n</i> (no. 14)	<i>P</i> 2 ₁ / <i>n</i> (no. 14)
<i>T</i> [K]	120(2)	120(2)
<i>a</i> [Å]	11.2205(2)	8.1541(4)
<i>b</i> [Å]	20.5943(4)	16.2447(8)
<i>c</i> [Å]	21.9857(5)	23.836(2)
α [°]	90	90
β [°]	91.710(1)	97.106(2)
γ[°]	90	90
<i>V</i> [Å] ³	5078.2(2)	3133.1(3)
Ζ	4	2
μ(Mo Kα) [mm ⁻¹]	3.543	5.818
Diffrns collected	54360	38524
Independent diffrns	11660	7172
Observed ^a diffrns	10688	6751
R_{int}^{b} [%]	2.91	2.41
No. of parameters	603	365
<i>R^b</i> obsd diffrns [%]	1.81	1.91
<i>R, wR^b</i> all data [%]	2.20, 3.76	2.10, 4.39
Δρ [e Å-3]	0.45, -0.40	1.16, -0.77

Copies of the NMR spectra

Figure S16 ¹H NMR spectrum (CD₂Cl₂, 400 MHz) of 2a

Figure S17 ¹³C{¹H} NMR spectrum (CD₂Cl₂, 101 MHz) of 2a

Figure S18 $^{31}P\{^{1}H\}$ NMR spectrum (CD₂Cl₂, 162 MHz) of **2a** (the "signal" at $\delta_{P} \approx 10$ is a spike)

Figure S19 ¹H NMR spectrum (CD₂Cl₂, 400 MHz) of 3a

Figure S20 $^{\rm 13}C\{^{\rm 1}\rm H\}$ NMR spectrum (CD_2Cl_2, 101 MHz) of 3a

24 22 20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 f1 (ppm)

Figure S21 ³¹P{¹H} NMR spectrum (CD₂Cl₂, 162 MHz) of **3a** (the "signal" at $\delta_P \approx 10$ is a spike)

Figure 22 ¹H NMR spectrum (CDCl₃, 400 MHz) of 4

Figure S23 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (CDCl_3, 101 MHz) of 4

Figure S24 ${}^{\rm 31}P\{{}^{\rm 1}H\}$ NMR spectrum (CDCl₃, 162 MHz) of 4

Figure S26 ${\rm ^{13}C\{^{1}H\}}$ NMR spectrum (CDCl₃, 101 MHz) of 5

Figure S27 ${\rm ^{31}P}\{{\rm ^{1}H}\}$ NMR spectrum (CDCl_3, 162 MHz) of 5

Figure S29 $^{13}C\{^{1}H\}$ NMR spectrum (acetone-d₆, 101 MHz) of 6

Figure S30 ${}^{_{31}}P\{{}^{_{1}}H\}$ NMR spectrum (acetone-d_6, 162 MHz) of 6

Figure S32 ¹³C{¹H} NMR spectrum (acetone-d₆, 101 MHz) of 7a

Figure S33 ${}^{31}P\{{}^{1}H\}$ NMR spectrum (acetone-d_6, 162 MHz) of 7a

Figure S35 ${}^{\rm 13}C\{{}^{\rm 1}\text{H}\}$ NMR spectrum (CD₂Cl₂, 101 MHz) of 7b

80 70 f1 (ppm)

Figure S36 ${}^{31}P\{{}^{1}H\}$ NMR spectrum (CD₂Cl₂, 162 MHz) of 7b