Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Information

1

Novel Pd(II) pincer complexes bearing salicylaldimine-based benzothiazole derivatives: synthesis, structural characterization, DNA/BSA binding, and biological evaluation

Sutthida Wongsuwan,^a Jaruwan Chatwichien,^{b,c} Weekit Sirisaksoontorn,^a Kittipong Chainok,^d Apisit Songsasen^{*a} and Ratanon Chotima^{*e}

^aDepartment of Chemistry, Faculty of Science, Kasetsart University, 10900 Bangkok, Thailand ^bProgram in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210

Bangkok, Thailand

°Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand

^dThammasat University Research Unit in Multifunctional Crystalline Materials and Applications

(TU-MCMA), Faculty of Science and Technology, Thammasat University, 12121 Pathum Thani, Thailand

^eDepartment of Chemistry, Faculty of Science, Naresuan University, 65000 Phitsanulok, Thailand.

Corresponding authors:

E-mail: R.C. (ratanonc@nu.ac.th) and A.S. (fsciass@ku.ac.th)

Fig. S1 ¹H NMR (400 MHz, DMSO– d_6) spectra of ligand HL¹ and Pd(II) complex 1.

Fig. S2 ¹H NMR (400 MHz, DMSO– d_6) spectra of ligand HL² and Pd(II) complex **2**.

Fig. S3 ¹H NMR (400 MHz, DMSO– d_6) spectra of ligand HL³ and their Pd(II) complex **3**.

Fig. S4 ¹H NMR (400 MHz, DMSO– d_6) spectra of ligand HL⁴ and Pd(II) complex 4.

Fig. S5 ¹H NMR (400 MHz, DMSO– d_6) spectra of ligand HL⁵ and Pd(II) complex **5**.

Fig. S6 ¹H NMR (400 MHz, DMSO– d_6) spectra of ligand HL⁶ and Pd(II) complex 6.

Fig. S7 ¹H NMR (400 MHz, DMSO– d_6) spectra of ligand HL⁷ and Pd(II) complex 7.

Fig. S8 ¹H NMR (400 MHz, DMSO– d_6) spectra of ligand HL⁸ and Pd(II) complex 8.

Fig. S9 ¹³C NMR (100 MHz, DMSO- d_6) spectra of ligand HL² and Pd(II) complex 2.

Fig. S10 FT-IR (ATR) spectra of ligand HL¹ and Pd(II) complex 1.

Fig. S11 FT-IR (ATR) spectra of ligand HL² and Pd(II) complex 2.

Fig. S12 FT-IR (ATR) spectra of ligand HL³ and Pd(II) complex 3.

Fig. S13 FT-IR (ATR) spectra of ligand HL⁴ and Pd(II) complex 4.

Fig. S14 FT-IR (ATR) spectra of ligand HL⁵ and Pd(II) complex 5.

Fig. S15 FT-IR (ATR) spectra of ligand HL⁶ and Pd(II) complex 6.

Fig. S16 FT-IR (ATR) spectra of ligand HL⁷ and Pd(II) complex 7.

Fig. S17 FT-IR (ATR) spectra of ligand HL⁸ and Pd(II) complex 8.

Fig. S18 UV-visible spectra of Pd(II) complexes 1-8 in DMSO at 25°C for 0-48 h.

Fig. S19 UV-visible spectra of Pd(II) complexes 1-8 in PBS solution (pH 7.4) at 37°C for 0-48 h.

Fig. S20 UV–visible spectra of Pd(II) complexes (50 μ M) in the absence and presence of CT–DNA (0–40 μ M) (a–g). Wolfe–Shimer plot of [DNA] vs. [DNA]/($\varepsilon_a - \varepsilon_f$) for determination of the binding constant (K_b) for Pd(II) complexes 1–8 (h).

Fig. S21 Fluorescence quenching spectra of EB–DNA ([DNA] = 10 μ M; [EB] = 4 μ M; λ_{ex} = 525 nm; λ_{em} = 603 nm) in the absence and presence of Pd(II) complexes (0–18 μ M) (a–g).

Fig. S22 Fluorescence quenching profile by 1–8; Stern–Volmer plots of EB–DNA (a), and Scatchard plot of EB–DNA (b).

Fig. S23 Fluorescence quenching profile by complexes **1–8**; Stern–Volmer plots of BSA (a), and Scatchard plot of BSA (b).

Fig. S24 Fluorescence quenching spectra of BSA (2 μ M; $\lambda_{ex} = 280$ nm; $\lambda_{em} = 350$ nm) in the absence and presence of complex 1 (0–3 μ M) (a). Synchronous spectra of BSA (2 μ M) in the presence of increasing concentrations of complex 1 (0–3 μ M) with a wavelength separation of $\Delta\lambda = 15$ nm (b) and $\Delta\lambda = 60$ nm (c).

Fig. S25 Fluorescence quenching spectra of BSA (2 μ M; $\lambda_{ex} = 280$ nm; $\lambda_{em} = 350$ nm) in the absence and presence of complex 2 (0–3 μ M) (a). Synchronous spectra of BSA (2 μ M) in the presence of increasing concentrations of complex 2 (0–3 μ M) with a wavelength separation of $\Delta\lambda = 15$ nm (b) and $\Delta\lambda = 60$ nm (c).

Fig. S26 Fluorescence quenching spectra of BSA (2 μ M; $\lambda_{ex} = 280$ nm; $\lambda_{em} = 350$ nm) in the absence and presence of complex **4** (0–3 μ M) (a). Synchronous spectra of BSA (2 μ M) in the presence of increasing concentrations of complex **4** (0–3 μ M) with a wavelength separation of $\Delta\lambda = 15$ nm (b) and $\Delta\lambda = 60$ nm (c).

Fig. S27 Fluorescence quenching spectra of BSA (2 μ M; $\lambda_{ex} = 280$ nm; $\lambda_{em} = 350$ nm) in the absence and presence of complex 5 (0–3 μ M) (a). Synchronous spectra of BSA (2 μ M) in the presence of increasing concentrations of complex 5 (0–3 μ M) with a wavelength separation of $\Delta\lambda = 15$ nm (b) and $\Delta\lambda = 60$ nm (c).

Fig. S28 Fluorescence quenching spectra of BSA (2 μ M; $\lambda_{ex} = 280$ nm; $\lambda_{em} = 350$ nm) in the absence and presence of complex **6** (0–3 μ M) (a). Synchronous spectra of BSA (2 μ M) in the presence of increasing concentrations of complex **6** (0–3 μ M) with a wavelength separation of $\Delta\lambda = 15$ nm (b) and $\Delta\lambda = 60$ nm (c).

Fig. S29 Fluorescence quenching spectra of BSA (2 μ M; $\lambda_{ex} = 280$ nm; $\lambda_{em} = 350$ nm) in the absence and presence of complex 7 (0–3 μ M) (a). Synchronous spectra of BSA (2 μ M) in the presence of increasing concentrations of complex 7 (0–3 μ M) with a wavelength separation of $\Delta\lambda = 15$ nm (b) and $\Delta\lambda = 60$ nm (c).

Fig. S30 Fluorescence quenching spectra of BSA (2 μ M; $\lambda_{ex} = 280$ nm; $\lambda_{em} = 350$ nm) in the absence and presence of complex 8 (0–3 μ M) (a). Synchronous spectra of BSA (2 μ M) in the presence of increasing concentrations of complex 8 (0–3 μ M) with a wavelength separation of $\Delta\lambda = 15$ nm (b) and $\Delta\lambda = 60$ nm (c).

Fig. S31 Cytotoxicity of Pd(II) complexes **1–8** and cisplatin toward IMR–90, A549, HepG2, and T47D cell lines. IC₅₀ values were fitted from the plot between %inhibition and log[concentration] using the GraphPad Prism5 software.

	HL ²	HL ³	1	2	3	5
Empirical formula	CHNOS	CHNOS	C ₂₀ H ₁₃ ClN ₂ OPd	C H CIN ODAS	$2(C_{21}H_{15}ClN_2O_2Pd$	C H CIE N ODAS
	$C_{21}\Pi_{17}\Pi_{2}OS$	$C_{21}\Pi_{16}\Pi_{2}O_{2}S$	S	C ₂₁ H ₁₅ CIN ₂ OFuS	S)	$C_{20}\Pi_{11}C\Pi_{2}\Pi_{2}OPdS$
Formula weight	345.42	360.44	471.27	485.30	1002.60	507.22
Temperature (K)	296.15	296.15	296.15	296.15	296.15	296.15
Crystal system	Monoclinic	Monoclinic	Monoclinic	Orthorhombic	Orthorhombic	Orthorhombic
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	Pbca	Pbca	Pbca
<i>a</i> (Å)	10.9409(3)	10.779(4)	10.5645(13)	13.0960(10)	12.996(2)	12.4974(3)
<i>b</i> (Å)	12.9321(3)	12.613(4)	17.130(3)	10.9779(9)	10.9433(15)	11.1274(3)
<i>c</i> (Å)	13.1159(4)	13.596(4)	10.1453(14)	25.673(2)	26.809(4)	25.9429(8)
α (°)	90	90	90	90	90	90
β (°)	111.9350(10)	110.290(13)	105.873(5)	90	90	90
γ(°)	90	90	90	90	90	90
$V(\text{\AA}^3)$	1721.41(8)	1733.8(10)	1766.0(4)	3691.0(5)	3812.9(10)	3607.71(17)
Ζ	4	4	4	8	4	8
<i>F</i> (000)	720.7704	752.8144	933.4216	1930.8628	1994.9499	2000

Table S1 Crystallographic data and structure refinement parameters for HL², HL³, 1–3, and 5

$D_{\rm c} ({\rm g}~{\rm cm}^{-3})$	1.3289	1.3807	1.7724	1.7465	1.7464	1.868
μ (mm ⁻¹)	0.199	0.205	1.332	1.277	1.243	1.326
θ range (°)	2.61 to 28.35	2.58 to 28.32	3.11 to 28.33	2.55 to 26.41	3.13 to 30.59	2.91 to 28.34
Reflections collected	43327	61709	49008	63511	105897	153380
Max., min transmission	0.7457, 0.6566	0.7457, 0.6870	0.7457, 0.6926	0.7454, 0.6209	0.7461, 0.6835	0.7457, 0.6664
R _(int)	0.0842	0.0509	0.0491	0.0759	0.0450	0.0516
Goodness-of-fit on F^2	1.0574	1.0695	1.0624	1.0393	1.0459	1.154
Final <i>R</i> indexes [$I \ge 2\sigma(I)$]:	0 0432 0 0979	0.0385.0.0955	0 0265 0 0644	0.0672.0.1678	0.0368.0.0718	0 0299 0 0619
R_1 , w R_2	0.0432, 0.0979	0.0303, 0.0755	0.0203, 0.0011	0.0072, 0.1076	0.0308, 0.0718	0.0277,0.0017
Final R indexes [all data]: R_1 ,	0.0810.01185	0.0502 0.1035	0 0342 0 0693	0 0729 0 1711	0 0438 0 0749	0.0357.0.0643
wR_2	0.0010, 0.1105	0.0302, 0.1035	0.05 12, 0.0055	0.0729, 0.1711	0.0150, 0.0715	0.0557, 0.0015
Largest diff. peak/hole (e Å ⁻³)	0.2512/-0.3004	0.2660/-0.3385	0.7172/-0.6565	1.4601/-2.0156	0.7130/-0.9514	0.374/-0.589
CCDC no.	2068395	2068691	2216314	2216316	2216315	2216317

Bond length	8	Bond angles		Dihedral angles	
N1C1	1.296(3)	N1-C1-C8	120.8(2)	C2-N1-C1-C8	-176.6(2)
N1-C2	1.386(3)	N2-C9-C8	119.9(2)	N2-C9-C8-C1	5.0(3)
N2–C9	1.419(2)	N2-C14-C15	123.4(2)	C9-N2-C14-C15	-174.9(2)
N2-C14	1.282(2)	C9-N2-C14	118.6(2)	N2-C14-C15-C16	6.7(3)
S1–C1	1.749(2)	C15-C16-O1	121.7(2)	C14-C15-C16-O1	-0.7(3)
O1–C16	1.360(3)	S1-C1-C8	124.0(1)	C9-C8-C1-S1	12.4(3)

Table S2 Selected bond lengths (Å), bond angles (°), and dihedral angles (°) for HL².

Table S3 Selected bond lengths (Å), bond angles (°), and dihedral angles (°) for HL³.

Bond lengths	\$	Bond angles		Dihedral angles	
N1-C6	1.381(2)	N1-C7-C8	121.5(1)	C6-N1-C7-C8	-177.9(1)
N1-C7	1.298(2)	N2-C13-C8	119.9(1)	N2-C13-C8-C7	2.6(2)
N2-C13	1.415(2)	N2-C14-C15	122.8(1)	C13-N2-C14-C15	-175.9(1)
N2-C14	1.283(2)	C13-N2-C14	118.3(1)	N2-C14-C15-C16	6.9(2)
S1-C7	1.754(1)	C15-C16-O1	122.3(1)	C14-C15-C16-O1	-1.2(2)
O1–C16	1.359(2)	S1-C7-C8	123.7(1)	C13-C8-C7-S1	10.1(2)

 Table S4 Selected bond lengths (Å), bond angles (°), and dihedral angles (°) for complex 1.

Bond lengths	S	Bond angles		Dihedral angles	
N1-C7	1.299(3)	N1-C7-C6	125.9(2)	C15-N2-C14-C13	-173.2(3)
N1–C8	1.423(4)	N1-C8-C13	121.1(3)	N1-C8-C13-C14	-4.6(5)
N2-C14	1.312(4)	N2-C14-C13	125.9(3)	C8-N1-C7-C6	165.1(2)
N2-C15	1.406(3)	C8-N1-C7	118.8(2)	N1-C7-C6-C1	-17.4(4)
S1C14	1.726(3)	C6-C1-O1	124.9(2)	C7–C6–C1–O1	7.7(4)

Pd1–Cl	2.3286(8)	O1-Pd1-N1	90.63(8)	N2-Pd1-N1-C8	47.1(2)
Pd1–O1	1.981(2)	O1–Pd1–Cl1	87.74(6)	N2-Pd1-N1-C7	-139.2(2)
Pd1–N2	2.027(2)	N2-Pd1-Cl1	95.38(6)	N2-Pd1-O1-C1	48.4(5)
Pd1–N1	1.994(2)	N1-Pd1-N2	88.55(8)	O1-Pd1-N1-C8	-144.2(2)
01–C1	1.312(3)	S1-C14-C13	119.6(2)	C8-C13-C14-S1	-150.3(3)

 Table S5 Selected bond lengths (Å), bond angles (°), and dihedral angles (°) for complex 2.

Bond length	IS	Bond angles		Dihedral angles	
N1-C1	1.40(1)	N1-C7-C8	125.6(7)	C1-N1-C7-C8	174.5(7)
N1-C7	1.30(1)	N2-C13-C8	122.1(7)	N2-C13-C8-C7	-4(1)
N2-C13	1.412(9)	N2-C14-C15	126.3(7)	C13-N2-C14-C15	-166.0(7)
N2-C14	1.305(9)	C13-N2-C14	119.0(6)	N2-C14-C15-C20	36.0(5)
S1–C7	1.741(8)	С15-С20-О1	123.3(6)	С14-С15-С20-О1	-6(1)
O1–C20	1.311(9)	S1-C7-C8	119.7(6)	C13-C8-C7-S1	156.9(7)
Pd1–N1	2.029(7)	N1-Pd1-N2	88.2(3)	O1-Pd1-N2-C13	145.8(5)
Pd1–N2	1.994(6)	N1-Pd1-Cl1	95.3(2)	N1-Pd1-O1-C20	- 50(1)
Pd1–O1	1.973(5)	O1-Pd1-Cl1	88.3(2)	N1-Pd1-N2-C13	-46.8(5)
Pd1-Cl	2.331(2)	O1-Pd1-N2	91.0(2)	N1-Pd1-N2-C14	141.6(6)

 Table S6 Selected bond lengths (Å), bond angles (°), and dihedral angles (°) for complex 3.

Bond length	S	Bond angles		Dihedral angles	
N1C1	1.405(4)	N1-C7-C8	126.2(2)	C1-N1-C7-C8	175.6(3)
N1–C7	1.308(3)	N2-C13-C8	120.6(2)	N2-C13-C8-C7	-3.5(4)
N2-C13	1.420(3)	N2-C14-C15	125.4(2)	C13-N2-C14-C15	-168.8(2)
N2C14	1.297(3)	C13-N2-C14	118.2(2)	N2-C14-C15-C20	19.8(4)

S1–C7	1.737(3)	C15-C20-O1	124.7(2)	C14-C15-C20-O1	-4.9(4)
O1–C20	1.317(3)	S1-C7-C8	119.7(2)	C13-C8-C7-S1	157.4(2)
Pd1–N1	2.035(2)	N1-Pd1-N2	88.57(9)	O1-Pd1-N2-C13	145.1(2)
Pd1-N2	1.985(2)	N1-Pd1-Cl1	95.26(7)	N1-Pd1-O1-C20	-45.1(5)
Pd1–O1	1.984(2)	O1-Pd1-Cl1	88.61(6)	N1-Pd1-N2-C13	-47.4(2)
Pd1-Cl	2.3322(7)	O1-Pd1-N2	90.37(8)	N1-Pd1-N2-C14	139.4(2)

 Table S7 Selected bond lengths (Å), bond angles (°), and dihedral angles (°) for complex 5.

Bond length	S	Bond angles		Dihedral angles	
N1-C1	1.401(3)	N1-C7-C8	125.7(2)	C1-N1-C7-C8	-174.6(2)
N1–C7	1.311(3)	N2-C13-C8	121.1(2)	N2-C13-C8-C7	2.1(4)
N2-C13	1.428(3)	N2-C14-C15	125.4(2)	C13-N2-C14-C15	166.6(2)
N2-C14	1.288(3)	C13-N2-C14	118.8(2)	N2-C14-C15-C16	-17.6(4)
S1–C7	1.729(2)	C15-C16-O1	126.6(2)	C14-C15-C16-O1	4.6(4)
O1–C16	1.304(3)	S1-C7-C8	120.1(2)	C13-C8-C7-S1	-155.6(2)
Pd1–N1	2.029(2)	N1-Pd1-N2	87.81(8)	O1-Pd1-N2-C13	-143.7(3)
Pd1–N2	1.984(2)	N1-Pd1-Cl1	94.76(6)	N1-Pd1-O1-C16	39.8(4)
Pd1–O1	1.997(2)	O1–Pd1–Cl1	89.87(5)	N1-Pd1-N2-C13	48.4(2)
Pd1–Cl	2.3263(7)	O1-Pd1-N2	90.13(8)	N1-Pd1-N2-C14	-136.8(2)

 Table S8 Free energy of binding of the complexes with biomolecules.

Complex	Free energy of binding (kcal mol ^{-1}) ^{a}						
compion	DNA (PDB ID: 1BNA)	DNA (PDB ID: 1Z3F)	BSA (PDB ID: 4F5S)				
3	-9.07	-8.49	-9.40				
5	-7.79	-7.38	-7.97				

^aBest complex pose according to Autodock

Table S9 Active site residues of DNA and BSA involved in non-bonded interactions with the complexes.

Complex	Active site residues		
complex	DNA (PDB ID: 1BNA)	DNA (PDB ID: 1Z3F)	BSA (PDB ID: 4F5S)
3	DT8, DT19, DT20	DG2, DC1, DC5, DG6	Pro117, Leu115, Lys144, Ile181,
			Arg185, Arg144, His185
5	DT7, DC9, DA18,	DG2, DC1, DC5, DG6,	Pro110, Asp108, Arg458,
	DT19, DT20	DA3	Glu424, His145, Arg193,
			Arg196

						SI^b	
Ligand	A549	HepG-2	T47D	IMR-90	A549	HepG-2	T47D
HL ¹	>100	>100	>100	>100	~1	~1	~1
HL^2	>100	68.6 ± 7.6	>100	>100	~1	1.46	~1
HL ³	>100	87.3 ± 13.5	76.8 ± 6.0	>100	~1	1.15	1.30
HL ⁴	>100	46.3 ± 4.1	>100	>100	~1	2.16	~1
HL ⁵	>100	>100	51.9 ± 1.8	>100	~1	~1	1.93
HL^{6}	>100	44.9 ± 6.4	38.7 ± 0.5	>100	~1	2.23	2.58
HL^7	>100	50.3 ± 3.4	32.2 ± 10.8	>100	~1	1.99	3.10
HL ⁸	>100	47.2 ± 0.9	46.2 ± 21.6	>100	~1	2.19	2.16

 Table S10 IC₅₀ values in different human cancer and normal cell lines (48 h) of Schiff base ligands.