Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting information

 TiO_2 (P25) nanoparticles catalyzed C-alkylation and quinoline synthesis via borrowing hydrogen method^{ $\dagger\,\ddagger}$

Krishnan Kala ^a, Sanjeev Gupta ^b, Venugopal T. Bhat ^a, (the late) Manickam Sasidharan ^{a‡}, Parasuraman Selvam ^{b,c}, Thanikachallam Pushpa Malini ^{a*}

- ^a SRM Research Institute and Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
- ^b National Centre for Catalysis Research and Department of Chemistry, Indian Institute of Technology-Madras, Chennai 600 036, India
- ^c International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan

Keywords: C- alkylation, TiO₂, borrowing hydrogen; hydrogen auto-transfer; quinoline.

^{*} Corresponding author's E-mail: T.P. Malini < pushpamt@srmist.edu.in>

[†]Supporting information is available for this paper

[‡] This paper honors the memory of our wonderful co-author, Professor M. Sasidharan, who died prematurely due to COVID-19.

TABLE OF CONTENTS

1	General information	S2
2	Catalyst Characterization	S 3
3	Catalyst Recyclability	S 4
3	Characterization data	S 6
4	References	S12
4	¹ H and ¹³ C NMR Spectra	S13

General information

The catalytic reaction's chemical components were all sourced from commercial suppliers. This was not subjected to any additional purification prior to use. Titanium dioxide (TiO₂, P25) nanoparticles (21 nm size) with 99.9% purity were purchased from Sigma-Aldrich. Benzyl alcohols, acetones, and their substituted compounds were obtained from various chemical sources, like Sigma-Aldrich, Tokyo Kasei Industries (TCI), and Avra Chemicals. Solvents (hexane, petroleum ether, and ethyl acetate) were received from Avra Chemicals. The solvents were dried using a standard procedure. C-alkylation and quinoline synthesis reactions were achieved in an Ar atmosphere. a 15-mL reaction tube made with quartz submerged in an oil bath (silicone oil), coupled with an inbuilt thermocouple that tracks temperature and a magnetic stirrer sensor to regulate stirring speed. A Bruker BBFO (500 MHz and 400 MHz) spectrometer was used to record ¹H and ¹³C NMR signals. Spin-spin coupling constant (J) is mentioned in Hz, chemical shift (δ) is mentioned in ppm, and an internal standard (TMS) and solvent (CDCl₃) are employed in the spectrometer. An Agilent 7890-B with a 30-meter capillary column (OV-101) and equipped with a flame ionization detector (FID) was used for GC analysis, and Dodecane (30 µL) served as the external standard for the GC's product analysis.

Catalyst Characterization

Figure. S1. XRD pattern of the commercial TiO₂.

Figure. S2. BET isotherms and BJH pore-size distribution (inset) of TiO_2 catalyst.

Figure. S3. TEM image of TiO₂ (P25) catalyst.

Figure.S4. Core-level XP spectra of TiO₂ (P25).

Figure. S5. EPR spectra of TiO₂ (P25).

Catalyst recyclability

The TiO₂ recovered in the first reaction run was properly washed using ethanol and milli-Q water to remove the organic products or solvent molecules clogging the catalyst's surface. It was vacuum dried at 120 °C for 2 h. Following that, the catalytic reactions were furnished with standard reaction conditions. After the reaction was completed, the reaction tube was cooled to room temperature, and the TiO₂ was centrifuged and washed properly with milli-Q water and ethanol. The recovered catalyst was vacuum dried in a vacuum oven at 120 °C for 2 hours. This complete process must be repeated each time before the next reaction run begins. This cycle of reaction was repeated six times. Silica gel column chromatography (hexane-ethyl acetate solvent method) is used to obtain the yield of pure products.

Figure. S6. Recyclability test of TiO₂ catalyst to C-Alkylation reaction.

¹H and ¹³C NMR data

1,3-diphenylpropan-1-one (3aa) ¹ prepared by
standard procedure with a yield of 96%, Colorless oil. ¹ H NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 7.8(d, <i>J</i> = 7.9 Hz, 1H), 7.38 (t, <i>J</i> = 7.3 Hz, 1H), 7.28 (t, <i>J</i> = 7.6 Hz, 1H), 7.19 – 7.08 (m, 3H), 7.06 (t, <i>J</i> = 7.0 Hz, 1H), 3.13 (t, <i>J</i> = 7.7 Hz, 2H), 2.92 (t, <i>J</i> = 7.7 Hz, 2H).
¹³ C NMR (126 MHz, CDCl ₃) δ 199.24, 141.40, 136.90, 133.17, 128.70, 128.64, 128.55, 128.13, 126.24, 40.51, 30.19.
1-phenyl-3-(m-tolyl)propan-1-one (3ba) ² prepared by standard procedure with a yield of 97%, white solid. ¹ H NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 7.95 (dd, <i>J</i> = 8.3, 1.1 Hz, 2H), 7.54 (t, <i>J</i> = 7.4 Hz, 1H), 7.44 (t, <i>J</i> = 7.7 Hz, 2H), 7.18 (t, <i>J</i> = 7.5 Hz, 1H), 7.09 – 6.95 (m, 3H), 3.33 – 3.22 (m, 2H), 3.08 – 2.92 (m, 2H), 2.32 (s, 3H).
¹³ C NMR (126 MHz, CDCl ₃) δ 199.37, 141.24, 138.15, 136.83, 133.09, 129.26, 128.62, 128.46, 128.07, 126.90, 125.41, 40.58, 30.07, 21.43.
3-(4-methoxyphenyl)-1-phenylpropan-1-one (3ca) ² prepared by standard procedure with a yield of 89%, Yellow solid. ¹ H NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 7.99 (d, <i>J</i> = 7.8 Hz, 2H), 7.58 (t, <i>J</i> = 7.3 Hz, 1H), 7.48 (t, <i>J</i> = 7.7 Hz, 2H), 7.21 (d, <i>J</i> = 8.3 Hz, 2H), 6.88 (d, <i>J</i> = 8.4 Hz, 2H), 3.82 (s, 3H), 3.30 (t, <i>J</i> = 7.7 Hz, 2H), 3.05 (t, <i>J</i> = 7.6 Hz, 2H).
¹³ C NMR (126 MHz, CDCl ₃) δ 199.43, 158.01, 136.90, 133.34, 133.09, 129.41, 128.64, 128.08, 113.96, 55.30, 40.75, 29.30.
1-(4-ethoxyphenyl)-3-phenylpropan-1-one (3ab) ² prepared by standard procedure with a yield of 81%, Yellow solid. ¹ H NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 7.89 – 7.80 (m, 2H), 7.24 – 7.19 (m, 2H), 7.17 (dd, J = 6.3, 1.8 Hz, 2H), 7.12 (t, J = 7.1 Hz, 1H), 6.86 – 6.77

(m, 2H), 4.00 (m, J = 7.0 Hz, 2H), 3.24 - 3.09 (m, 2H),
3.05 - 2.89 (m, 2H), 1.35 (t, $J = 7.0$ Hz, 3H).
13 C NMR (126 MHz, CDCl ₃) δ 197.88, 162.91, 141.52, 130.35, 129.77, 128.54, 128.47, 126.11, 114.17, 63.77, 40.14, 30.36, 14.72. 1-(3,4-dimethoxyphenyl)-3-phenylpropan-1-one (3ac) prepared by standard procedure with a yield of 97%, Yellow solid. ¹ H NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 7.60 (dd, $J = 8.4$, 2.0 Hz, 1H), 7.55 (d, $J = 2.0$ Hz, 1H), 7.39 – 7.37 (m, 1H), 7.32 (dd, $J = 17.0$, 9.8 Hz, 3H), 7.23 (t, $J = 7.2$ Hz, 1H), 6.89 (d, $J = 8.4$ Hz, 1H), 3.95 (d, $J = 6.3$ Hz, 6H), 3.32 – 3.24 (m, 2H), 3.12 – 3.04 (m, 2H).
 ¹³C NMR (126 MHz, CDCl₃) δ 197.96, 153.24, 149.01, 141.46, 130.09, 128.56, 128.48, 127.58, 126.97, 126.15, 122.70, 110.11, 56.07, 40.03, 30.46. 1-(2,5-dimethoxyphenyl)-3-phenylpropan-1-one (3ad) prepared by standard procedure with a 72%
yielding yellow solid. ¹ H NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 7.29 (t, $J = 7.2$ Hz, 2H), 7.24 (d, $J = 8.0$ Hz, 3H), 7.19 (t, $J = 7.1$ Hz, 1H), 7.02 (d, $J = 9.0$ Hz, 1H), 6.90 (t, $J = 7.5$ Hz, 1H), 3.83 (t, $J = 21.4$ Hz, 6H), 3.31 (t, $J = 7.7$ Hz, 2H), 3.02 (t, $J = 7.7$ Hz, 2H).
¹³ C NMR (126 MHz, CDCl ₃) δ 201.30, 153.45, 153.13, 141.73, 128.49, 128.42, 128.34, 125.93, 120.08, 113.94, 113.07, 56.04, 55.84, 45.46, 30.52.
3-phenyl-1-(p-tolyl)propan-1-one (3ae) ² prepared by standard procedure with a yield of 88%, Yellow oil. ¹ H NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 7.93 (d, <i>J</i> = 7.5 Hz, 2H), 7.44 – 7.20 (m, 7H), 3.33 (t, <i>J</i> = 7.4 Hz, 2H), 3.22 – 3.07 (m, 2H), 2.46 (s, 3H).
¹³ C NMR (126 MHz, CDCl ₃) δ 198.90, 143.89, 141.49, 134.45, 129.37, 128.60, 128.52, 128.25, 126.19, 40.39, 30.27, 21.71.

136.57, 133.35, 128.72, 128.00, 123.94, 77.28, 77.02,
76.77, 38.85, 29.18.
1-(benzo[d][1,3]dioxol-5-yl)-3-phenylpropan-1-one (3ea) prepared by standard procedure with a yield of 70%, Yellow oil. ¹ H NMR (500 MHz, CDCl ₃ , 25 °C, TMS) δ 7.52 (d, J= 7.8Hz, 1H), 7.42 (s, 1H), 7.17-7.29 (m, 5H), 6.8 (d, J= 8.6Hz, 1H), 5.98 (s, 2H), 3.19 (t, J=7.5Hz, 2H), 3.03 (t, J=7.6Hz, 2H). ¹³ C NMR (126 MHz, CDCl ₃) δ 197.32, 151.73, 148.20, 141.34, 131.77, 128.53, 128.43, 126.13, 124.26, 107.90, 107.87, 101.84, 40.23, 30.36.
2-phenylquinoline $(6aa)^2$ prepared by standard procedure with a yield of 94%, White solid. ¹ H NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 8.13 – 8.04 (m, 4H), 7.77 (d, <i>J</i> = 8.6 Hz, 1H), 7.72 (d, <i>J</i> = 8.1 Hz, 1H), 7.63 (t, <i>J</i> = 7.6 Hz, 1H), 7.46 – 7.40 (m, 3H), 7.37 (t, <i>J</i> = 7.3 Hz, 1H).
 ¹³C NMR (126 MHz, CDCl₃) δ 157.39, 148.33, 139.72, 136.83, 129.78, 129.72, 129.39, 128.91, 127.64, 127.53, 127.23, 126.34, 119.05.
2-(4-ethylphenyl)quinoline $(6ab)^2$ prepared by standard procedure with a yield of 84%, white solid. ¹ H NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 8.06 (d, <i>J</i> = 8.4 Hz, 1H), 7.99 (dd, <i>J</i> = 18.7, 8.1 Hz, 3H), 7.69 (d, <i>J</i> = 8.5 Hz, 1H), 7.64 (d, <i>J</i> = 8.0 Hz, 1H), 7.58 (t, <i>J</i> = 7.5 Hz, 1H), 7.36 (t, <i>J</i> = 7.4 Hz, 1H), 7.22 (d, <i>J</i> = 7.7 Hz, 2H), 2.60 (q, <i>J</i> = 7.5 Hz, 2H), 1.16 (t, <i>J</i> = 7.6 Hz, 3H).
¹³ C NMR (126 MHz, CDCl ₃) δ 157.42, 148.36, 145.78, 137.20, 136.70, 129.72, 129.62, 128.45, 127.62, 127.51, 127.15, 126.12, 118.94, 28.79, 15.63.
2-(2,5-dimethylphenyl)quinoline $(6ac)^2$ prepared by standard procedure with a yield of 70%, Yellow oil. ¹ H NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 8.13 – 8.07 (m, 2H), 7.78 (d, <i>J</i> = 8.1 Hz, 1H), 7.66 (t, <i>J</i> = 8.3 Hz, 1H), 7.47 (dd, <i>J</i> = 15.9, 7.8 Hz, 2H), 7.17 (s, 1H), 7.13 (d, <i>J</i> = 7.8 Hz, 1H), 7.07 (d, <i>J</i> = 8.6 Hz, 1H), 2.30 (s, 3H), 2.28 (s, 3H).

	¹³ C NMR (126 MHz, CDCl ₃) δ 160.46, 147.94, 140.56,
	135.96, 135.49, 132.74, 130.80, 130.32, 129.61,
	129.25,129.27, 127.52, 126.75, 126.36, 122.47, 20.99,
	19.86.
	2-(4-isobutylphenyl)quinoline (6ad) ³ prepared by
	standard procedure with a yield of 67%, white solid. ${}^{1}\mathrm{H}$
	NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 8.09 (t, $J = 8.6$
	Hz, 2H), 7.99 (d, <i>J</i> = 7.7 Hz, 2H), 7.77 (d, <i>J</i> = 8.5 Hz,
	1H), 7.72 (d, <i>J</i> = 8.0 Hz, 1H), 7.63 (t, <i>J</i> = 7.5 Hz, 1H),
	7.42 (t, <i>J</i> = 7.3 Hz, 1H), 7.22 (d, <i>J</i> = 7.6 Hz, 2H), 2.47
	(d, J = 7.1 Hz, 2H), 1.93 - 1.77 (m, 1H), 0.86 (s, 3H),
	0.85 (s, 3H).
	13 C NMR (126 MHz CDCl ₂) δ 157 51 148 31 143 25
	137 20 136 71 129 70 129 68 127 47 127 37
	2-(4-methoxyphenyl)quinoline (6ae) ³ prepared by
	standard procedure with a yield of 93%, white solid. ${}^{1}\mathbf{H}$
	NMR (500 MHz, CDCl ₃ 25°C, TMS) δ 8.06 (t, J = 8.7
	Hz, 4H), 7.71 (dd, $J = 13.4$, 8.4 Hz, 2H), 7.61 (t, $J = 7.7$
	Hz, 1H), 7.40 (t, $J = 7.9$ Hz, 1H), 6.95 (d, $J = 8.8$ Hz,
	2H), 3.78 (s, 3H).
	$130 \text{ NMD} (120 \text{ MU} - 0001) \\ 100 2 150 2 150 2 149 20$
	10 C NMR (120 MHZ, CDCl ₃) 0 160.83, 156.93, 148.29, 126.69, 122.25, 120.61, 120.52, 129.02, 127.47
	130.08, 132.23, 129.01, 129.52, 128.92, 127.47, 126.02, 125.04, 118.50, 114.25, 55.42
	120.95, 123.94, 118.39, 114.23, 53.45.
	2-(4-ethoxyphenyi)quinonne (oai) prepared by
N	NMR (500 MHz CDCl ₂ 25°C TMS) δ 8.03 – 7.95 (m
	AH 7 64 (dd $I = 11.1.84$ Hz 2H) 7 56 (m $I = 8.4$
	(10, 7.04, 00, 00, 00, 00, 00, 00, 00, 00, 00,
	-6.86 (m 2H) 3.93 (s 2H) 1.27 (s 3H)
	0.00 (11, 211), 5.95 (5, 211), 1.27 (5, 511).
	¹³ C NMR (126 MHz, CDCl ₃) δ 160.24, 156.96, 148.32,
	136.63, 132.06, 129.59, 129.53, 128.90, 127.47,
	126.92, 125.90, 118.55, 114.77, 63.57, 14.86.
	2-(3,4-dimethoxyphenyl)quinoline (6ag) prepared by
	standard procedure with a yield of 98%, white solid. ${}^{1}\mathbf{H}$
	NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 8.19 (t, $J = 9.4$
	Hz, 2H), 7.89 (dd, $J = 16.5$, 5.3 Hz, 2H), 7.83 (d, $J = 16.5$, 5.3 Hz, 7.83 (d, $J = 16.5$, 5.85 (d, $J = 16.5$, 5.85 (d, $J = 16.5$, 5.
	$ 9.0 \text{ Hz}, 1 \text{H} \rangle, 7.74 \text{ (m, } J = 8.4, 6.9, 1.4 \text{ Hz}, 1 \text{H} \rangle, 7.68 $

	(dd, <i>J</i> = 8.4, 2.1 Hz, 1H), 7.52 (t, <i>J</i> = 7.5 Hz, 1H), 7.02 (d, <i>J</i> = 8.4 Hz, 1H), 4.07 (s, 3H), 3.98 (s, 3H).
	 ¹³C NMR (126 MHz, CDCl₃) δ 156.86, 150.38, 149.39, 148.21, 136.69, 132.53, 129.65, 129.49, 127.47, 126.99, 126.03, 120.27, 118.67, 111.02, 110.40, 56.03.
	2-(4-chlorophenyl)quinoline (6ah) ³ prepared by standard procedure with a yield of 77%, white solid. ¹ H NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 8.24 (d, <i>J</i> = 8.6 Hz, 1H), 8.14 (m, <i>J</i> = 15.2, 8.5 Hz, 3H), 7.88 – 7.81 (m, 2H), 7.74 (t, <i>J</i> = 7.5 Hz, 1H), 7.55 (t, <i>J</i> = 7.3 Hz, 1H), 7.50 (d, <i>J</i> = 8.4 Hz, 2H).
	 ¹³C NMR (126 MHz, CDCl₃) δ 156.05, 148.24, 138.07, 137.02, 135.56, 129.89, 129.69, 129.05, 128.85, 127.51, 127.24, 126.54, 118.62.
F	2-(4-fluorophenyl)quinoline (6ai) ¹ prepared by standard procedure with a 62% yielding white solid. ¹ H NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 8.23 (d, <i>J</i> = 8.6 Hz, 1H), 8.20 – 8.13 (m, 3H), 7.85 (d, <i>J</i> = 8.6 Hz, 2H), 7.74 (t, <i>J</i> = 7.7 Hz, 1H), 7.54 (t, <i>J</i> = 7.9 Hz, 1H), 7.22 (t, <i>J</i> = 8.7 Hz, 2H).
	¹³ C NMR (126 MHz, CDCl ₃) δ 164.81, 162.83, 156.32, 148.18, 137.02, 129.87, 129.57, 129.50, 129.43, 127.52, 127.10, 126.41, 118.73.
CF3	2-(3-(trifluoromethyl)phenyl)quinoline (6aj) ³ prepared by standard procedure with a yield of 98%, white solid. ¹ H NMR (500 MHz, CDCl ₃ , 25°C, TMS) δ 8.42 (s, 1H), 8.29 (d, <i>J</i> = 7.8 Hz, 1H), 8.18 (d, <i>J</i> = 8.6 Hz, 1H), 8.14 (d, <i>J</i> = 8.4 Hz, 1H), 7.85 – 7.75 (m, 2H), 7.74 – 7.63 (m, 2H), 7.58 (t, <i>J</i> = 7.8 Hz, 1H), 7.50 (t, <i>J</i> = 7.5 Hz, 1H).
	¹³ C NMR (126 MHz, CDCl ₃) δ 155.58, 148.25, 140.37, 137.19, 130.72, 130.01, 129.82, 129.33, 127.54, 127.40, 126.80, 125.92, 125.89, 124.45, 124.42, 118.59.

References:

- R. Sharma, A. Mondal, A. Samanta, N. Biswas, B. Das, D. Srimani, *Adv. cat 364* (2022) 2429–2437.
- M. Nallagangula, C. Sujatha, V. T. Bhat, K. Namitharan, *chem. commun 55* (2019) 8490– 8493.
- 3. R. Pothikumar, V. T. Bhat, K. Namitharan, Chem. Commun, 56 (2020) 13607-13610.

