Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Silver-Ion-Passivated Black Phosphorus Photodetector to Improve Response Time

Huilin Zuo^{1§},Jing Bai^{2§}, Chenglin Wang¹, Junhao Ni¹, Yang Ding¹, Bingyu Pan¹, Zhengyang Cai¹, Shaoqing Xiao¹, Xiaofeng Gu¹, Xiumei Zhang^{3*}, Haiyan Nan^{1*}

1 Engineering Research Center of IoT Technology Applications (Ministry of Education) Department of Electronic Engineering, Jiangnan University, China

2 Department of Foundation, Army Engineering University of PLA, China

3 School of Science, Jiangnan University, China

§ contributed equally to this article

Figure S1. Transient response of as-prepared (a) and Ag+ decorated BP photodetector upon laser illumination at different wavelengths. It can be seen that the response time at each wavelength increases significantly.

Table 1 Comparison	n of different	methods	and performar	nce to impl	rove the s	stability of
black phosphorus.						

type	method	response time	hysteresis	mobility	Ref.
Gr-BP/Gr	covered hexagonal boron	t _r =1.8 ns, t _f =	/	/	1
	nitride (hBN)	1.68 ns			
BP/MoS2/	encapsulated in hexagonal	$t_r=35ns, t_f=$	/	/	2
arsenic-doped	boron nitride (hBN)	40ns			
BP					
BP FET	dope with tellurium (Te)	/	/	1850cm ²	3
				V ⁻¹ s ⁻¹	
BP FET	metal-ion-modified	/	/	1666cm ²	4
				V ⁻¹ s ⁻¹	
BP FET	scalable superhydrophobic	/	/	572cm ²	5
	passivation layer			V ⁻¹ s ⁻¹	
Au/FL-BP	electrochemically	$t_r=47ms, t_f=$	/	~45cm ²	6
based nano-	deposited Au nanoparticles	30ms		V ⁻¹ s ⁻¹	
devices					
BP FET	SiO ₂ passivation	/	/	524.3cm ²	7

				V ⁻¹ s ⁻¹	
BP	Ag ⁺ passivation	t _r =50ms,	from	844.12cm	Our
photodetector		t _f =80ms	85.6V to	2 V ⁻¹ s ⁻¹	work
			29 V		

Figure S2. The response performance of a BP(Ag+) photodetector is measured when illuminated by a laser at wavelengths of 447 nm, 520 nm, 637 nm, 940 nm and 1550 nm.

Figure S3. Photocurrent as a function of the light intensity for 637 nm and 940 nm before (a) and after AgNO₃ solution soaking (b). It was observed that for 637 nm laser, the coefficient of α increased from 0.22 to 0.32, and for 940 nm laser, the coefficient of α increased from 0.32 to 0.38.

Figure S4. Dependence of the detectivity of the BP detector on the incident light power at 447 nm.

Reference

- 1. T.-Y. Chang, P.-L. Chen, J.-H. Yan, W.-Q. Li, Y.-Y. Zhang, D.-I. Luo, J.-X. Li, K.-P. Huang and C.-H. Liu, ACS Applied Materials & Interfaces, 2019, 12, 1201-1209.
- T. Y. Chang, P. L. Chen, P. S. Chen, W. Q. Li, J. X. Li, M. Y. He, J. T. Chao, C. H. Ho and C. H. Liu, ACS Appl Mater Interfaces, 2022, 14, 32665-32674.
- B. Yang, B. Wan, Q. Zhou, Y. Wang, W. Hu, W. Lv, Q. Chen, Z. Zeng, F. Wen, J. Xiang, S. Yuan, J. Wang, B. Zhang, W. Wang, J. Zhang, B. Xu, Z. Zhao, Y. Tian and Z. Liu, Adv Mater, 2016, 28, 9408-9415.
- 4. Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu and X. F. Yu, Adv Mater, 2017, 29.
- 5. B. Jiang, H. Huang, R. Chen, G. Li, D. Flandre, D. Wan, X. Chen, X. Liu, C. Ye and L. Liao, Applied Physics Letters, 2020, 117.
- N. Wang, H. Liu, X. Zhou, Q. Luo, X. Yang, H. Yang, H. Shu, H. Xu, Q. Zhang, D. Hildebrandt, X. Liu, S. Qiao, B. Liu and Q. Feng, Advanced Functional Materials, 2022, 32.
- B. Wan, B. Yang, Y. Wang, J. Zhang, Z. Zeng, Z. Liu and W. Wang, Nanotechnology, 2015, 26, 435702.