Supporting Information

SnSe Quantum Dots Anchored on Few-layered Ti_3C_2 as Anodes for Sodium Ion Batteries with Enhanced Cycle Stability

Guoxu Ni^a, Yingjie Zhang^a, Yuzheng Li^a, Chengxiao Xu^a Jinjie Zhang^a, Peipei Huo ^{a,*}, Bo Liu^{a,*}

^a Laboratory of Functional Molecules and Materials, School of Physics and
Optoelectronic Engineering, Shandong University of Technology, Zibo 255000,
China

* Corresponding authors at: Laboratory of Functional Molecules and Materials,

School of Physics and Optoelectronic Engineering, Shandong University of

Technology, Zibo 255000, China.

E-mail addresses: peipeihuo@sdut.edu.cn (Peipei Huo); liub@sdut.edu.cn (Bo Liu).

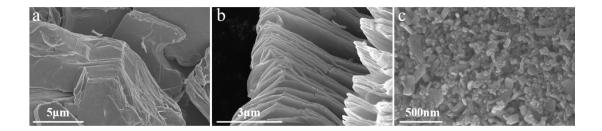
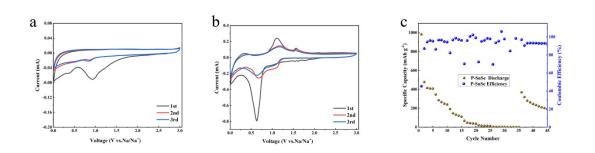



Figure. S1. SEM images of (a) $Ti_3AlC_2 MAX$. (b) m- Ti_3C_2 . (c) P-SnSe

Figure. S2. CV curves of (a) $f-Ti_3C_2$ and (b) P-SnSe at a scan rate of 0.1 mV s⁻¹. (c) Rate performance of P-SnSe electrode.

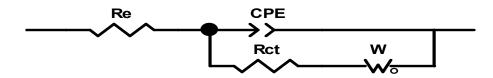
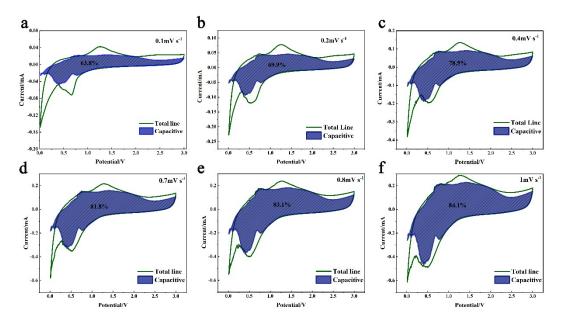


Figure. S3. The equivalent circuit of EIS.

	Re	Rct	CPE-T	CPE-P	W-R	W-T	W-P
	(Ω)	(Ω)	(uF)	(m)	(DW)	(DW)	
SnSe@f-Ti ₃ C ₂	6.72	184	1.65E-5	0.71	190.4	0.32	0.32
P-SnSe	5.70	358	3.36E-6	0.86	4221	81.9	0.56

Table S1. Impedance parameters for the equivalent circuits

The relationship between the peak current (i) and the scan rate (v) obeys the power law of


$$i = av^{b}(1)$$

The intrinsic charge storage kinetics of the electrode can be qualitatively reflected by the b value, which is the fitting slope of log (i) to log (v) curve. The b values of 0.5 and 1 correspond to the diffusion-controlled process and the surface-controlled pseudocapacitive reaction, respectively.

In addition, the two contributions at different scan rates can be quantitatively distinguished as follows:

$$i = k_1 v + k_2 v^{1/2} (2)$$

 $k_1 v$ and $k_2 v^{1/2}$ represent the contributions of pseudocapacitance and diffusion control, respectively.

Figure. S4. Separation of capacitive and diffusion-controlled contribution areas at different scanrate: (a) 0.1, (b) 0.2, (c) 0.4, (d) 0.7, (e) 0.8 and 1 mV s⁻¹ of SnSe@f-Ti₃C₂.