Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information

Hierarchical CoMoS₄ flakes with rich physico-electrochemical physiognomies

for electrocatalytic oxygen evolution reaction

Yogesh Kumar Sonia,^a Siddhant Srivastav^a and Sumanta Kumar Meher*^a

^aMaterials Electrochemistry & Energy storage Laboratory, Department of Chemistry, Malaviya

National Institute of Technology Jaipur, Rajasthan 302017, India

Email*: skmeher.chy@mnit.ac.in

Scheme 1. Plausible mechanism for the formation of CoMoS₄ flake-like microstructure.

Fig. S1 Nitrogen adsorption-desorption isotherm of CoMoS₄; the BJH pore size distribution plot of CoMoS₄ is shown in the inset.

Fig. S2. (A) CV profiles of CoMoS₄ in non-Faradic potential region; (B) Charging current (anodic and cathodic current density) vs. scan rate plots for CoMoS₄.

Sl. No.	Material	Measured current density (mA cm ⁻²)	Overpotential (mV)	Reference
1	Li _x MoO ₃	10	485	s1
2	Mo doped Mn ₂ O ₃	10	570	s2
3	FeSe ₂ /CoSe ₂ @CC	10	407	s3
4	Mn ₂ O ₃	10	730	s4
5	MoS ₂ /NiS-Ni ₃ S ₂	10	460	s5
6	CoS	10	440	s6
7	rGO/CoMoO4	10	475	s7
8	CoMoO ₄	8.93	550	s8
9	CoMoS	10	520	s9
10	CoSSIL/CNT	10	410	s10
11	Ru doped MnO ₂	10	680	s11
12	CaMn _x O _y	10	550	s12
13	NiCo ₂ O ₄ /NiO	10	430	s13
14	Flake-like CoMoS4	10	430	Present work

Table S1. The comparison of the electrocatalytic OER efficiency of the flake-like CoMoS₄ with the reported Co- and Mo-based sulfide/oxide electrocatalysts.

References

- s1 S. Cao, J. Qi, F. Lei, Z. Wei, S. Lou, X. Yang, Y. Guo, P. Hao, J. Xie, and B. Tang, *Chem. Eng. J.*, 2021, 413, 127540.
- s2 S. E. Balaghi, C. A. Triana and G. R. Patzke, ACS Catalysis, 2020, 10, 2074–2087
- s3 B. Fei, Z. Chen, Y. Ha, R. Wang, H. Yang, H. Xu and R. Wu, *Chem. Eng. J.*, 2020, *394*, 124926.
- s4 Y. Wang, Ying, H. Tianjun Hu, C. Yan Chen, Y. Hongjie, and Q. Yanting Qiao. Int. J. Hydrogen Energy 2020, 45, 22744–22751.

- s5 Y. Guan, X. Haicheng Xuan, L. Hongsheng and H. Peide *Electrochim. Acta*, 2019, *320*, 134614.
- s6 K. Prabakaran, M. Lokanathan and B. Kakade, Appl. Surf. Sci., 2019, 466, 830-836.
- s7 J. Ahmed, M. Ubaidullah, T. Ahmad, N. Alhokbany and S. M. Alshehri, *ChemElectroChem*, 2019, *6*, 2524–2530.
- s8 Z. Liu, Zailun, Y. Chen Yuan, and T. Fei Teng, J. Alloys Compd, 2019, 781, 460-466.
- s9 X. Zhang, P. Ding, Y. Sun, X. Li, H. Li and J. Guo, J. Alloys Compd., 2018, 731, 403–410.
- s10 Y. Ding, A. Klyushin, X. Huang, T. Jones, D. Teschner, F. Girgsdies, T. Rodenas, R. Schlögl and S. Heumann, *Angew. Chem.*, 2018, 57, 3514–3518.
- s11 M. Lübke, A. Sumboja, L. McCafferty, C. F. Armer, A. D. Handoko, Y. Du, K. McColl, F. Cora, D. Brett, Z, Liu and J. A, Darr, *ChemistrySelect*, 2018, 3, 2613–2622.
- s12 H. Simchi, K. A. Cooley, J. Ohms, L. Huang, P. Kurz and S. E. Mohney, *Inorg. Chem.*, 2018, 57, 785–792.
- s13 Y. Wang, Z. Zhang, X. Liu, F. Ding, P. Zou, X. Wang, Q. Zhao and H. Rao, ACS Sustain. Chem. Eng., 2018, 6, 12511–12521.